试说明25*3的2n+1次方*2的n次方-36*3的n次方*6的n次方能被13整除
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:17:51
x){~[322~>(OٚϦ2r l]c3,e`hbjCgS&Hfƥ 4@&ij5i健m!`i8.%0IsS-C8["q\t$AoT ?
试说明25*3的2n+1次方*2的n次方-36*3的n次方*6的n次方能被13整除
试说明25*3的2n+1次方*2的n次方-36*3的n次方*6的n次方能被13整除
试说明25*3的2n+1次方*2的n次方-36*3的n次方*6的n次方能被13整除
25*3^(2n+1)*2^n-36*3^n*6^n
=25*3^(n+1)*3^n*2^n-36*3^n*6^n
=25*3*3^n*6^n-36*3^n*6^n
=75*18^n-36*18^n
=39*18^n
=13*3*18^n
能被13整除
能被13整除