∫x(tanx)^2dx和∫(lnx)^2dx,∫x(tanx)^2dx ∫(lnx)^2dx麻烦给出过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:20:19
∫x(tanx)^2dx和∫(lnx)^2dx,∫x(tanx)^2dx ∫(lnx)^2dx麻烦给出过程,
x){ԱB$1B3(F*,r˞}׋Wt$0\Xv64w=sAũ {z c 0aP/X!1F(Sg;$Q b)ٝW_\Qvӡ\凧EO7ԯf6h ? `ʺ*./.H̳E4

∫x(tanx)^2dx和∫(lnx)^2dx,∫x(tanx)^2dx ∫(lnx)^2dx麻烦给出过程,
∫x(tanx)^2dx和∫(lnx)^2dx,
∫x(tanx)^2dx
∫(lnx)^2dx
麻烦给出过程,

∫x(tanx)^2dx和∫(lnx)^2dx,∫x(tanx)^2dx ∫(lnx)^2dx麻烦给出过程,
∫x(tanx)^2dx=∫x[(secx)^2-1]dx=∫x (secx)^2 dx-∫x dx=∫x d(tanx) -x^2/2=xtanx-∫tanxdx -x^2/2=xtanx+ln|cosx|-x^2/2+C
∫(lnx)^2dx=x×(lnx)^2 -∫x×2(lnx)×1/xdx=x×(lnx)^2 -2∫(lnx)dx=x×(lnx)^2 -2[x×lnx-∫x×1/xdx]=x×(lnx)^2 -2x×lnx+2x+C