LIM1+3+5+…+(2n+1)/n^+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:58:09
LIM1+3+5+…+(2n+1)/n^+1
x)566~԰L[(OPS?/N&H~ 2`gs: wBx Ov/0`d ㌐`H#/f,L Ɏ';Ny9sIhZy@"(V 0 bNޣI:O;fe:` ;k|9sCZ 4mU\g 60''3W#OWn׬F_-p*)1B T%&P! +

LIM1+3+5+…+(2n+1)/n^+1
LIM1+3+5+…+(2n+1)/n^+1

LIM1+3+5+…+(2n+1)/n^+1
1+3+5+…+(2n+1)
有n+1项
所以=(1+2n+1)(n+1)/2=(n+1)^2
所以LIM1+3+5+…+(2n+1)/(n^2+1)
=(n+1)^2/(n^2+1)
=(n^2+2n+1)/(n^2+1)上下同除n^2
=[1+2*(1/n)+1/n^2]/(1+1/n^2)
n→∞
则1/n→0,1/n^2→0
所以极限=(1+2*0+0)/(1+0)=1

lim(n->无穷){1+3+5+…+(2n+1)}/(n^+1)
=lim(n->无穷)n(2n+2)/(n^2+1)
=lim(n->无穷)4/2
=2