求(t+1)(9t+1)/(3t+1)^2最大值(t>0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:43:55
求(t+1)(9t+1)/(3t+1)^2最大值(t>0)
xN@_em6DiI . H0.4&,BG|fU_;3@D7~AE tvi8 63+S-,9:A$Q'q~iM{4eqwoӎDX4h6lHVVufs6ؔz^̥`+& tޘ`cZ5nLkWȘX92`d$XA͍$H")ix dNIE]䔁 ׃_fX-Hyz ̀ijwk DIb:,؞8ձsk ;lH)=pOފ u6Te?+

求(t+1)(9t+1)/(3t+1)^2最大值(t>0)
求(t+1)(9t+1)/(3t+1)^2最大值(t>0)

求(t+1)(9t+1)/(3t+1)^2最大值(t>0)
高中学生可以这样做:
对(t+1)(9t+1)/(3t+1)^2求导,得(18t+10)(3t+1)的平方-(18t+6)(9t的平方+10t+1)/(3t+1)的4次方
化简得:(-12t+4)/(3t+1)的3次方
当:(-12t+4)/(3t+1)=0时,t=1/3
t0
t>1/3时,(-12t+4)/(3t+1)

y=(t+1)(9t+1)/(3t+1)^2
=(9t^2+10t+1)/(9t^2+6t+1)
=[(9t^2+6t+1)+4/3*(3t+1)-4/3]/(3t+1)^2
=1+4/3*1/(3t+1)-4/3*1/(3t+1)^2
设x=1/(3t+1),t>0,则有0y=1+4/3x-4/3x^2=-4/3(x-1/2)^2+4/3*1/4+1=-4/3*(x-1/2)^2+4/3
即当x=1/2时,Y有最大值是:4/3
即当t=1/3时,Y有最大值是:4/3