已知关于x的一元二次方程x²-(2k+1)x+k²-k=0.求证:(1)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.(2)方程有两个不相等的实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:39:48
已知关于x的一元二次方程x²-(2k+1)x+k²-k=0.求证:(1)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.(2)方程有两个不相等的实数根
xR[OA+iewvvtd cZ)F5mxDbP@nLrs؈HG]Ow9۟8S0-W-g—m~+b$stTlZ!)ߙ;f%W'4΃,=#77F*qӂy h ԛvN;U'Q3̌Q$90/Y"uѾD$f`Ie(.G]ϙSQ?g#Yf b?8Mv4\ȹp dD!%.(5Rݼ ;VNz+]zޞ(#山ڠ0\cպL}OfaAb[U~Os(YGG㔀ZB6RU40bV sҐNu:U5FKl:Lo׸/Ȳ|^

已知关于x的一元二次方程x²-(2k+1)x+k²-k=0.求证:(1)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.(2)方程有两个不相等的实数根
已知关于x的一元二次方程x²-(2k+1)x+k²-k=0.求证:(1)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.(2)方程有两个不相等的实数根

已知关于x的一元二次方程x²-(2k+1)x+k²-k=0.求证:(1)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.(2)方程有两个不相等的实数根
证明
△=b²-4ac
=[-(2k+1)]²-4(k²+k)
=4k²+4k+1-4k²-4k
=1>0
∴方程有两个不相等实根
∵AB,AC是方程的两个实数根
∴AB+AC=2k+1,AB×AC=k²+k
∵△ABC是等腰三角形
若AB=BC=5,
则5+AC=2k+1
即AC=2k-4
5AC=k²+k
∴5(2k-4)=k²+k
∴k²-9k+20=0
(k-4)(k-5)=0
∴k=4或k=5
同理BC=AC=5,求的k=4,k=5
∴k=4或k=5

收起