求函数y=3sin(2x+兀/4),x属于〔0,兀〕的单调递减区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:45:35
求函数y=3sin(2x+兀/4),x属于〔0,兀〕的单调递减区间
xRj@JщB hwE(R7q7X(>0XBcVZZ_I_蝇Q .2{f;z*t0tLTMmc%#)?%&%ӷjvֻT^bǀoWD!FP?oʓ9hJ&v0 8OT%pD[_,t!NdFЕtj0&LY@ZiB[@JzۄonɱiJ;tHt@Skb.CfrAtpnE\_\E_> r\^OEa ^6\ő#Z !d ]q^Ehfy,zn=/! b X"&8kߑR^ $'Rz`?F(.T

求函数y=3sin(2x+兀/4),x属于〔0,兀〕的单调递减区间
求函数y=3sin(2x+兀/4),x属于〔0,兀〕的单调递减区间

求函数y=3sin(2x+兀/4),x属于〔0,兀〕的单调递减区间
解由x属于〔0,兀〕
即0≤x≤π
即0≤2x≤2π
即π/4≤2x+π/4≤9π/4
故当π/2≤2x+π/4≤3π/2时,y=3sin(2x+π/4),是减函数
故当π/8≤2x≤5π/8时,y=3sin(2x+π/4),是减函数
故函数单调递减区间[π/8,5π/8]

因为y=sinx的单调递减区间是[π/2+2kπ,3π/2+2kπ] ,(k∈Z+)
π/2+2kπ≤2x+π/4≤3π/2+2kπ
2kπ+π/4≤2x≤2kπ+5π/4
kπ+π/8≤x≤kπ+5π/8
又因为x∈[0,π]
所以 y=3sin(2x+π/4),x属于[0,π]的单调递减区间是 [π/8,5π/8]

算周期,2兀/2=兀,
原式:求函数y=3sin(2x+兀/4)=3sin[2(x+兀/8)],
周期为兀,1/4周期为兀/4,而兀/8是1/8周期,相当于周期为2x的函数y=sinx的(兀/4+2k兀)处。
左加右减,向左移动兀/8,
得(兀/8+k兀,3兀/8+k兀)