一元三次方程的系数与它的图像有什么关系?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 02:42:01
一元三次方程的系数与它的图像有什么关系?
xWRVZcCvұ@;}oks j%A1 |OBіdd&#^kMdBS yN NGSJLN'YYm^q'K~a2~vXH}6cĊ=ϋ-.'e]璕szO?? Qn6:di)sY`-ZP_j-VRtNkUw,iVΑibk(8 uT$g!7S $9LQ'BQ[8Lv2H߀C}J. v#}p4_h{ 46FPwP#C6ZC+¤:&YZEI1%ᖂ%A4%>OyJ^ 6эjSF#'DV*JD  ˤI% CaK8B׾{=ԠQwH9LPh#H)&EO\0_<ME-Z$$>IHD~{- 3

一元三次方程的系数与它的图像有什么关系?
一元三次方程的系数与它的图像有什么关系?

一元三次方程的系数与它的图像有什么关系?
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式.我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和.归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B.方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
后记: 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了.由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解.
二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出.不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的.由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作. 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推理)求解不出来的问题,换一个思维,用归纳法(及通过对简单和特殊的同类问题的解法的归纳类比)常常能取得很好的效果.
(资料来自搜搜)
利用连续性容易证明实系数一元三次方程至少有一个实根.
如果有虚根的话必定成对出现,这就得到根的分布.
如果要从图像上来判断的话只能看函数曲线与x轴的交点,以及x轴是否与曲线在该点相切.补充:
对三次函数来说,和x轴的交点有三种类型:
1.相交但不相切:单根
2.相切并且是拐点:两重根3.相切但不是拐点:三重根