圆x^2+y^2-2y*cosθ-sin^2θ=0的半径是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:29:23
x){:"H2HרR+9̼8s;l
jyt_˳mIP_`gC`-
m Raa:uhTUkA%nz';vaS~qAb( ?w
圆x^2+y^2-2y*cosθ-sin^2θ=0的半径是
圆x^2+y^2-2y*cosθ-sin^2θ=0的半径是
圆x^2+y^2-2y*cosθ-sin^2θ=0的半径是
1
x^2+y^2-2y*cosθ-sin^2θ=0
==>x^2+y^2-2y*cosθ+cos^2θ-cos^2θ-sin^2θ=0
==>x^2+y^2-2y*cosθ+cos^2θ=cos^2θ+sin^2θ=1
==>x^2+(y-cosθ)^2=1
即圆心为(0,cosθ),半径为1