设f'(x)连续,f'(0)=0,f"(0)存在,则limx-0f(x-x^2)-f(x)/x^3=,具体见图

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:33:06
设f'(x)连续,f'(0)=0,f
xjSQ_ $93Hn7-kr6͵7⥻.n*nun(֗bō%03߼=>г~~fRfW0Qpu2|t,)A?xZ1D5qb0gy\uըy&}םjTsiz͂oY\-y$b}Ru"%$RHٙĢd48ѓ0 nRr6!d"٫Xڲ,ڠEklh dyRczz;0&<,\,rÜNɣ> J|ڦc%x1rGE AsH#p ,[]O*L

设f'(x)连续,f'(0)=0,f"(0)存在,则limx-0f(x-x^2)-f(x)/x^3=,具体见图
设f'(x)连续,f'(0)=0,f"(0)存在,则limx-0f(x-x^2)-f(x)/x^3=,具体见图

设f'(x)连续,f'(0)=0,f"(0)存在,则limx-0f(x-x^2)-f(x)/x^3=,具体见图