1+2+3+…+n=1/2n(n+1)和1^2+2^+…+n^2=1/6n(n+1)(2n+1)是由什么推导而来的或者是怎么化简的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 11:29:01
xN0_ˍK+}Dq ABcb1b¢bnw=H\;FF|% Ǹ uUCCFX dfV}5Or){5O2ѷtta&N@EәNmf;Qm_6Fi8L݂C]˔gPEBg6b+2RqDЂ0kDtǥ
3\πMw[B.
8H&Trn}~CSi|
/Y-m~ FGUꃐQa!G 2EDQB1K統!UT}`?~Ia<^9a묏pt`y͑C.rqzn2M}U/Wy=^7W Ђ
1+2+3+…+n=1/2n(n+1)和1^2+2^+…+n^2=1/6n(n+1)(2n+1)是由什么推导而来的或者是怎么化简的?
1+2+3+…+n=1/2n(n+1)和1^2+2^+…+n^2=1/6n(n+1)(2n+1)是由什么推导而来的或者是怎么化简的?
1+2+3+…+n=1/2n(n+1)和1^2+2^+…+n^2=1/6n(n+1)(2n+1)是由什么推导而来的或者是怎么化简的?
设Sn=1+2+3+.+(n-1) (1)
倒过来一下
Sn=(n-1)+(n-2)+……+2+1 (2)
(1)+(2)得
2Sn=n(n-1) (n个(n-1)相加)
所以Sn=n(n-1)/2
利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
级数n/(n+1)(n+2)(n+3)和是多少
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
e^(1/n)+e^(2/n)+e^(3/n)+…+e^(n-1/n)+e^(n/n)=?
高数题:n趋近于0,lim{1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+.+n/(n^2+n+n)}=?
设f(n)=1/n+1+1/n+2+1/n+3+……+1/3n(n∈N+),则f(n+1)-f(n)=?
为什么:n×(n+1)=1/3[n(n+1)×(n+2)-(n-1)×n×(n+1)]
为什么n(n+1)(n+2)(n+3)=(n²+3n+2)(n²+3n)?
数列a(n)=n (n+1)(n+2)(n+3),求S(n)
n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10这道题怎么解
n(n-1)(n-2)(n-3)(n-4)=154440.求N值 要步骤
2^n/n*(n+1)
lim(1/n+2/n+3/n+4/n+5/n+……+n/n)=lim(1/n)+lim(2/n)+……+lim(n/n)成立吗?(n趋近于无穷大)为什么不成立?
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n