求详解一下狄利克雷函数和魏尔斯特拉斯函数.但是对这两种函数感兴趣,希望可以详解一下,说得通俗一点.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:19:48
求详解一下狄利克雷函数和魏尔斯特拉斯函数.但是对这两种函数感兴趣,希望可以详解一下,说得通俗一点.
xU[OA+åD`|@ LJdXJJzPʶۖ3Oٮ-'}ig9sosܨ(yr4i#7X Nc#vF&"aXk5W^k>r:D0CzH~ԉCbd 0cgǤFG?`KYp 3`':63?3u#0-$Y-̴:WWE׍lKdHdUpqcF+0@ʕ\vİ8Z+Uؖ+F:nV:6Bzm~&>cCDp$Hg$"E@cs&QN5(Mp0mC@b.1󁕪CQj.ӵeصow+RcJ[!g^i[?@{iEű_SZM\*KEjȈbiߡYx: m_Vɒql 8K^ M:\FIs~A`DVfѺt&@[8) 4aSYq,n| j@ #Ɇ7ڂu*BMp[;<)2ܿy)w_H3Y.8S1<

求详解一下狄利克雷函数和魏尔斯特拉斯函数.但是对这两种函数感兴趣,希望可以详解一下,说得通俗一点.
求详解一下狄利克雷函数和魏尔斯特拉斯函数.
但是对这两种函数感兴趣,希望可以详解一下,说得通俗一点.

求详解一下狄利克雷函数和魏尔斯特拉斯函数.但是对这两种函数感兴趣,希望可以详解一下,说得通俗一点.
一、
实数域上的狄利克雷(Dirichlet)函数定义为分段函数:
D(x) = 0 (x是无理数)
1 (x是有理数)
1、定义域 R ,值域 {0,1}
2、奇偶性
∵ x 和 -x 同为有理数或同为无理数
∴ D(-x) = D(x)
又定义域是 R
故 为偶函数
3、周期性
对于无理数T
当x为有理数时,x+T是无理数,D(x+T) ≠ D(x)
∴无理数不是周期
对于任意非零有理数 T,
若x是有理数,则x+T也是有理数,D(x+T) = D(x) = 1
若x是无理数,则x+T也是无理数,D(x+T)= D(x) = 0
故 周期为任意非零有理数.
4、连续性
连续性是高数里的概念,通俗的说就是函数的每个点是连在一起的.
例如 y=x在R上是连续的,y=1/x 在x=0处不连续,但在[1,2] 这样的区间是连续的.
狄利克雷函数在每一处都是不连续的.
因此我们无法画出它的图像.
5、可导性
通俗的说,可导就是在某一点是平滑的,例如y=x²图像上的点,都是可导的
y=|x| 在 x=0处是不可导的,在其他点是可导的.
狄利克雷函数处处不可导.
二、魏尔斯特拉斯函数(Weierstrass function)是一类处处连续而处处不可导的实值函数.
将魏尔斯特拉斯函数在任一点放大,所得到的局部图都和整体图形相似.因此,无论如何放大,函数图像都不会显得更加光滑,也不存在单调的区间.
你可以想象一下,函数的每一个点都是像y=|x| 在 x=0的那个点.