求过直线(x-2)/5=(y+1)/2=(z-2)/4,且与平面x+4y-3z+1=0垂直的平面方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:24:01
求过直线(x-2)/5=(y+1)/2=(z-2)/4,且与平面x+4y-3z+1=0垂直的平面方程
xQJ@=n]l4@ ziKQ,xoR!)b&B@ 3;y3E~L^| S.LT)Y_b{|΄SHySEv/jFO^pN,"I@m!.ailPd0HL@kO:!BXx<rc؀ZCjuG3F .B @},qien)KhO ܊ڀgLW{Zt&x3O/yl

求过直线(x-2)/5=(y+1)/2=(z-2)/4,且与平面x+4y-3z+1=0垂直的平面方程
求过直线(x-2)/5=(y+1)/2=(z-2)/4,且与平面x+4y-3z+1=0垂直的平面方程

求过直线(x-2)/5=(y+1)/2=(z-2)/4,且与平面x+4y-3z+1=0垂直的平面方程
因平面x+4y-3z+1=0的法向量N=(1,4,-3)
且直线(x-2)/5=(y+1)/2=(z-2)/4的方向向量T=(5,2,4)
由N,T可求出所要求平面的法向量M
|i j k|
M=N*T=|1 4 -3|=22i-19j-18k=(22,-19,-18)
|5 2 4|
点a(2,-1,2)为直线上的点
由点法式可得平面方程为
22*(x-2)-19*(y+1)-18*(z-2)=0