an+1=an+2an-1构造新数列通项公式的求法(a1=1,a2=3)是不是可以设x^2=x+2,解得x1,x2 再设an=Ax1^n+Bx2^n,把a1=1,a2=2代入求AB得到an=Ax1^n+Bx2^n?听说有这么一种方法还有这是这样推出来的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:49:05
an+1=an+2an-1构造新数列通项公式的求法(a1=1,a2=3)是不是可以设x^2=x+2,解得x1,x2 再设an=Ax1^n+Bx2^n,把a1=1,a2=2代入求AB得到an=Ax1^n+Bx2^n?听说有这么一种方法还有这是这样推出来的?
an+1=an+2an-1构造新数列通项公式的求法(a1=1,a2=3)
是不是可以设x^2=x+2,解得x1,x2
再设an=Ax1^n+Bx2^n,把a1=1,a2=2代入求AB
得到an=Ax1^n+Bx2^n?
听说有这么一种方法
还有这是这样推出来的?
an+1=an+2an-1构造新数列通项公式的求法(a1=1,a2=3)是不是可以设x^2=x+2,解得x1,x2 再设an=Ax1^n+Bx2^n,把a1=1,a2=2代入求AB得到an=Ax1^n+Bx2^n?听说有这么一种方法还有这是这样推出来的?
是不是a(n+1)=an+2a(n-1)
可以构造:
a(n+1)+λan=k[an+λa(n-1)]
a(n+1)=kan+kλa(n-1)-λan
a(n+1)=(k-λ)an+kλa(n-1)
则有:
{k-λ=1
{kλ=2
解得:
{k=2
{λ=1
∴a(n+1)+an=2[an+a(n-1)]
即[a(n+1)+an]/[an+a(n-1)]=2
∴{a(n+1)+an}是以首项为4,公比为2的等比数列
∴a(n+1)+an=4•2^(n-1)=2^(n+1)
用待定系数法,设存在λ使[a(n+1)+λ•2^(n+1)]=-(an+λ•2^n)成立
则可得:
-[λ•2^(n+1)]-(λ•2^n)=2^(n+1)
-λ-1/2λ=1
λ=-2/3
∴[a(n+1)-2/3•2^(n+1)]=-[an-2/3•(2^n)]
∴数列{an-2/3•(2^n)}是首项为-1/3,公比为-1的等比数列
∴an-2/3•(2^n)=(-1/3)•(-1)^(n-1)
∴an=[(-1/3)•(-1)^(n-1)] + [2/3•(2^n)]=1/3[2^(n+1)-(-1)^(n-1)]
供参考~~
●︿●