高数求dy/dx的题目,具体题目看图

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/13 10:36:22
高数求dy/dx的题目,具体题目看图
xNA_eAA;3ݝYmѷ |*ָQ h@+ Q$D>0+^]*6^3W9gd+S[͍o̓kmlj| uZse `lq~sn+>zh̨.XV.+r\M3(yy<+[O 8G!l)g1lr݌M-B(bJqSI).Wbp)! ~XѣȑfXY,RelfC,\ GE;sf#rT2tIeJ3((R) $s0u3#ȩ$tdFIt)I |,W8P96#.9V23(tF%8YlԷ+o'4ɮ[?DP~M6tLJ1-׻5ks%xf'N7ͣ`+ l3L} tJĐD~ŸL0m&ci+$?8ͼOB!c fLq a)4? oسJWc^%<⠂"0z"6`ae&;(h&Qȣ`ඁ$0">1t:=^^pocXջ(F<IESn~ʋCv|tx@tp

高数求dy/dx的题目,具体题目看图
高数求dy/dx的题目,具体题目看图

高数求dy/dx的题目,具体题目看图

等一会我上图,一会在采纳

1/2ln(x²+y²)=arctany/x
两边同时对x求导,得
1/2 *1/(x²+y²)*(2x+2y*y')=1/[1+(y/x)²]* (y'x-y)/x²
x+yy'=y'x-y
(x-y)y'=x+y
y'=(x+y)/(x-y)
所以
dy=(x+y)/(x-y)dx

ln√(x^2+y^2)=arctany/x
1/2ln(x^2+y^2)=arctany/x
ln(x^2+y^2)=2arctany/x 两边对x求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+[y/x)^2]*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2(y'x-y)/x^2 /[1+(y/x)^2]
...

全部展开

ln√(x^2+y^2)=arctany/x
1/2ln(x^2+y^2)=arctany/x
ln(x^2+y^2)=2arctany/x 两边对x求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+[y/x)^2]*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2(y'x-y)/x^2 /[1+(y/x)^2]
=2(y'x-y)/(x^2+y^2)
2x+2yy'=2(y'x-y)
x+yy'=y'x-y
yy'-xy'=-x-y
y'=(-x-y)/(y-x)
=(x+y)/(x-y)

dy=(x+y)dx/(x-y)

收起