关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:29:56
关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)
xQN@-<$ۄ0{7%$B hl(TBԂn{/86h͛\)Y5#Ά~d= ftm5J:5rzY)

关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)
关于逆矩阵的证明题
设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)

关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)
楼上证明不对.
证明:
(1)在矩阵乘法中,乘积的秩r(AB)=n,若m≠n,则不失一般性,可设m

1.由A*B=E(m),可知,A的行数等于B的列数;由BA=E(n)同理可得,B的行数等于A的列数。所以m=n。
2.因为m=n,则E为n(m)阶矩阵,由逆距阵的定义可得,B=A^(-1)

关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵) 设A,B 分别是m*n,n*m矩阵,证明:AB和BA有相同的非零特征值. 设A和B分别是n*m型和m*n型矩阵,C=AB为可逆阵,证明:B的列向量组线性无关 矩阵题目:设A为m*n矩阵,而B C分别是m阶和n阶可逆矩阵,0为n*m零矩阵 证明A,B,C,麻烦答案写详细点,格式写清楚 设A和B分别是n×m型和m×n型矩阵,C=AB为可逆阵,证明:B的列向量线性无关证明不用很详细,关键是思路! 大一线性代数 求一证明题设A,B分别是m×n和n×s矩阵,且AB=O.证明:R(A)+R(B)≤n 设A和B分别是n*m型和m*n型矩阵,C=AB为可逆阵,证明:B的列向量组线性无关具体点儿被, 设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题 设A、B分别是s*n,n*m矩阵,证明:rank(ab)=rank(a)+rank(b)-n 证明 设A,B分别是s*n,n*m矩阵,如果AB=0,则rank(A)+rank(B) 证明:设A,B分别是m,n阶方阵,则分块矩阵 0 A B C 的行列式 = (-1)^mn |A||B|. 设矩阵A和C分别是m×n和s×λ阵,若要ABC有意义,矩阵B应是A.m×λ阵 B.n×s阵 C.m×s阵 D.n×λ阵 关于矩阵的证明问题1.设m*n矩阵A、B的秩相等,证明:存在m阶可逆矩阵P和n阶可逆矩阵Q使得PAQ=B.2.另外,关于一条定理的证明我有些看不明白,望指教,您能不能举个具体的例子说明一下P1是什么,P2 设A,B分别是n,m阶实对称矩阵,且B是正定矩阵.证明,存在m*n非零矩阵H,使B-HAH'成为正定矩阵. 关于矩阵最小多项式和特征多项式的关系设A是数域P上n级方阵,m(λ),f(λ)分别是A的最小多项式和特征多项式.证明:存在正整数t,使得f(λ)|m^t(λ).我是把两个式子都表示成一次因式的方幂的乘积, 关于线性代数中矩阵的证明题!设A是m*n矩阵,B是n*l矩阵,且r(A)=n试证明若AB=AC,则B=C. 关于逆矩阵的证明题设n阶矩阵A,B满足A+B=AB,证明A-E可逆 一、设V是所有n阶方阵组成的向量空间,M和N分别是由n阶上三角矩阵和和下三角矩阵组成的集合.证明:(1)M和N均是V均是V的子空间;(2)V=M⊕N;并求M和N的维数.