此式子的极限求法,用洛必达法则求解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:06:42
此式子的极限求法,用洛必达法则求解
xn@_ŊT \{lp\\A"Q( Y"AbCTUynءʛsm'ZOwx,}s:_oKK??9:R~2ɧW֧qtsn:aoCc^w*+Z:`8n ZA nQ/[l{(Xo[ 7q ja)t0D6`bLL̡On#LuM{"V6δ}a!2[Ą a#"*ފZԹ@\eu6Þ&TukZ]vgUPNSLT*͝,.ެՂ8aRypKh?Fj#}a~AgU8!V$dwWf7-HeMq@=SdпTdPw{g~>QFU2yy:cLZi- wq]=,D8Xf~

此式子的极限求法,用洛必达法则求解
此式子的极限求法,用洛必达法则求解
 

此式子的极限求法,用洛必达法则求解
=lim x^(3/2) * {[√(x+2) - √(x+1)] - [√(x+1) - √x]}
=lim x^(3/2) * {[(x+2) - (x+1)]/[(√(x+2) + √(x+1)] - [(x+1) - x]/[√(x+1) + √x)]}
=lim x^(3/2) * {1/[√(x+2) + √(x+1)] - 1/[√(x+1) + √x]}
=lim x^(3/2) * {[√(x+1) + √x] - [√(x+2) + √(x+1)]}/{[√(x+2) + √(x+1)]*[√(x+1) + √x]}
=lim x^(3/2) * [√x - √(x+2)]/{[√(x+2) + √(x+1)]*[√(x+1) + √x)]}
=lim x^(3/2) * [x - (x+2)]/{[√x + √(x+2)]*[√(x+2) + √(x+1)]*[√(x+1) + √x]}
=lim -2/{[√1 + √(1+2/x)]*[√(1+2/x) + √(1+1/x)]*[√(1+1/x) + √1]} 注:分子、分母同除以 x^(3/2)
=lim -2/{[1 + √(1+0)]*[√(1+0) + √(1+0)]*[√(1+0) + 1]}
=lim -2/[2*2*2]
=-1/4