设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1①若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)处具有公共切线,求a,b的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:34:06
设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1①若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)处具有公共切线,求a,b的值
xN@_RYk96([ IDJHIDPT 4i#ꦁK]]bY|N|}Gݸ<65Ʀz}\"뛪I4{#ٵe0go͋^~-}"P80hh'ـ&.&PI+s{,NkIX/T=MfBw:0~pcZޡ?,Oiy5@YA$U„,oJ"mO$E2_ !b/}aЕh7dT6b~Wsm"XC^-0dLbWp\F{5>Dz"r L7lr6;9zd*J=u y at2٭*wΕ6wi2 f ^{個Ek$xQBxjptr(NٰY<=}5a}ڹ d3l./tC

设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1①若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)处具有公共切线,求a,b的值
设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)
设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1①若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)处具有公共切线,求a,b的值②当a=1-2b时,若f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围

设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1①若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)处具有公共切线,求a,b的值
①f(x)=1/3*x^3-ax (a>0),f'(x)=x^2-a
g(x)=bx^2+2b-1,g'(x)=2bx
f(x)与g(x)在焦点(1,c)有公切线
则在焦点处函数值相同,且切线斜率相同
即有:f(1)=1/3-a=b+2b-1=g(1)
f'(1)=1-a=2b=g'(1)
联立可解得
a=1/3,b=1/3
②若a=1-2b,则 b=(1-a)/2
h(x)=f(x)+g(x)
=1/3*x^3-ax+(1-a)x^2/2-a
h'(x)=x^2+(1-a)x-a=(x+1)(x-a)
易知h(x)有两个极值点,分别为x=-1,x=a
若a≤-1,则1-a≥2
极小值为h(-1)=-1/3+1/2-a/2>0
由曲线性质知,此时最多只有一个零点
若a>-1,则1-a