如图,在平面直角坐标系中,直线y=3/4x-3与抛物线y=-1/4x²+bx+c交与A、B两点,点A在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上一动点(不与A、B重合),过点P作x轴的垂线,垂足为C,交直线AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:26:19
如图,在平面直角坐标系中,直线y=3/4x-3与抛物线y=-1/4x²+bx+c交与A、B两点,点A在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上一动点(不与A、B重合),过点P作x轴的垂线,垂足为C,交直线AB
xTSWWvѲ,,3L3a I b[8*iU&~@8f Y_ҽSM_amrwޗaYz52w Y}pr8 ߪ; X T^|ѣ ,|PG ӵ5S;BoQeFStDUՠB9R!c6 rR>m7q`- TjhT)| ChPy*gT m:xn6ڊ\Qi;! ]a׻֋FuzsD<0hsLT0d%ӼaǬ[zpKkX8Į UҎ*N2p$JT4x}$٫?}<3{oT6=9{Ʀ 8¤g#;@8 j &$$/N\V%˩SdOLÎ75syBT9O8m;_GY£eVa"p:u4Zki_!-2JO L/m.o GR05>eʪO&x N Sp67e,m7 0tQ l5

如图,在平面直角坐标系中,直线y=3/4x-3与抛物线y=-1/4x²+bx+c交与A、B两点,点A在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上一动点(不与A、B重合),过点P作x轴的垂线,垂足为C,交直线AB
如图,在平面直角坐标系中,直线y=3/4x-3与抛物线y=-1/4x²+bx+c交与A、B两点,点A在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上一动点(不与A、B重合),过点P作x轴的垂线,垂足为C,交直线AB与D,作PE⊥AB于E.②连接PA,以PA为边作正方形APFG,随着点P的运动,正方形的大小、位置也随之改变,当定点F恰好落在y轴上时,求点P的坐标

如图,在平面直角坐标系中,直线y=3/4x-3与抛物线y=-1/4x²+bx+c交与A、B两点,点A在x轴上,点B的横坐标为-8.点P是直线AB上方的抛物线上一动点(不与A、B重合),过点P作x轴的垂线,垂足为C,交直线AB
现在你只需要得到F点的坐标关于P点坐标的方程就可以了,
另外还有A点参照,列出来是一个方程组
|PA|代表P 到A的长度,方程你自己列吧
|PF|=|PA|
|AF|^2=2*|AP|^2
这样,F点的轨迹方程就有了,自己解吧
抛物线方程是y == 5 - x/4 - x^2/4
解方程
Solve[Sqrt[(-4 + xp)^2 + (5 - xp/4 - xp^2/4)^2] ==
Sqrt[(xf - xp)^2 + (-5 + xp/4 + xp^2/4 + yf)^2] &&
2 ((-4 + xp)^2 + (5 - xp/4 - xp^2/4)^2) == (-4 + xf)^2 + yf^2,{xf,
yf}]
结果为
{{xf -> 1/4 (20 + 3 xp - xp^2),yf -> 1/4 (36 - 5 xp - xp^2)},
{xf -> 1/4 (-20 + 5 xp + xp^2),yf -> 1/4 (4 + 3 xp - xp^2)}}
可以看到有两组解,其中第二组是我们要的,第二组就是F点的参数方程
现在 让xf==0
{{xp -> 1/2 (-5 - Sqrt[105])},{xp -> 1/2 (-5 + Sqrt[105])}}
第一个解是我们要的