如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:54:19
如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积
xRn@TV&x&~@\>RU6AHRAEV,*BEAH*$|Bb&NVc`]Ww|yiE}Zcξ?w@f2~%LNS|{D)Gz>euqp~8:IBhu'Lqkӣ, f{~ȿsB`3Ir绵z-ۖGqmEzzĪI9@9.R-U(;p 5 C)БƨlCغX؁(@eK?yJ]P!N@T,##Eu+v%ݣDvKٺ徙E"֚!A n~\Ȧʟ_[kvod56[y.pmvjs>ptOqw J ڛ\$RVbJA)]b3%FJ>KЋR[)`

如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积
如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积

如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积
如图?你的图太坑人!
大圆半径R是4,小圆半径r满足 2r²=R²,r=2(根号2)
阴影部分面积=小圆的一半 减去 (大圆的四分之一 减去 三角形ABO1)
=(1/2)π[2(根号2)]²-[(1/4)π4²-(1/2)4²]
=4π-(4π-8)
=8

如图,已知圆O1与圆O2相交于A,B两点,过点A作圆O2的切线,交圆O1于点C,过点B作两圆的割线分别交圆O1,O2于,E 如图,已知圆O1与圆O2相交于A,B两点,圆O2过O1,且AB是圆O2的直径,若圆O1的半径为4,求图中阴影部分的面积 如图,已知○O1和○O2相交于A,B两点,圆心O1在圆O2上,连心线O1O2与○O1交于点C、D,与○O 如图 已知圆o1与 圆o2相交于a b两点延长圆O1直径CA交圆O2于点D,延长圆O1的弦CB交O1的弦CB已知圆O1和圆O2相交于AB,延长圆O1直径CA交圆O2于点D,延长圆O1的弦CB交O2于点E,AC=6,AD:BC :BE=1:2:4则BE=? 已知,如下图,圆O1和圆O2相交于A、B两点,过点A的直线CD与圆O1交于C,与圆O2相交于D,过点B的直线EF与圆O1交已知,如下图,圆O1和圆O2相交于A、B两点,过点A的直线CD与圆O1交于C,与圆O2相交于D,过点B 已知,如下列四张图,圆O1和圆O2相交于A、B两点,过点A的直线CD与圆O1交于C,与圆O2相交于D,过点B的直线EF?2已知,如下图,圆O1和圆O2相交于A、B两点,过点A的直线CD与圆O1交于C,与圆O2相交于D,过点B的直 如图2 已知圆O1与圆O2相交于A,B两点,过点A的直线圆O1于点C,交圆O2于点D,M是CD的中点,圆O1的弦BE经过点M,与圆O2相交于点F,判断线段CE与DF的关系,并证明你的结论 如图+已知圆O1与圆O2相交于A,B两点,圆O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD1 求证 AD是圆O2的直径 2 求证 DA=DC 如图+已知圆O1与圆O2相交于A,B两点,圆O1在圆O2上,AC是圆O1的直径,直线CB与圆O2相交于点D,连接AD1 求证 AD是圆O2的直径 2 求证 DA=DC 已知圆O1与圆O2相交于A、B两点,点O1在圆O2上,C为圆O2上一点(不与A、B,O2重合),直线CB与圆O1交与另一点D. 如图,圆o1与圆o2相交于a,b两点,o1a切圆o2于点a,ac是圆o2的直径,已知o1o2=ac=6,则bc长 如图,圆O1与圆O2相交于A,B两点,直线AO1交圆O1于C,交圆O2于D,CB的延长线交圆O2于E, 如图,等圆⊙o1和⊙o2相交于a,b两点,⊙o1经过⊙o2的圆心o2,求∠1的度数 如图所示,已知圆O1和圆O2相交于A,B两点,圆O1在圆O2,AC是圆O1的直径,CB与圆O2相交于点D,连接AD.求证DA=DC 已知两个等圆圆O1与圆O2相交于A,B两点,圆O1经过O2,求角O1AB的度数 如图,已知圆O1和圆O2相交于A、B两点,且圆O2经过圆O1的圆心O1,若角D=30度,求角C的度数. 如图,已知圆O1与圆O2相交于点A、B,O1在O2上,AC是圆O1的直径,直线CB如图,已知⊙O1⊙O2相交于A、B,O1在⊙O2上,AC是⊙O1的直径,直线CB与⊙O2相交于点D连接AD1.求AD是⊙O2的直径2.DA=DC 还有第12题,本人感激不尽已知,如下图,圆O1和圆O2相交于A、B两点,过点A的直线CD与圆O1交于C,与圆O2相交于D,过点B的直线EF与圆O1交于E,与圆02相交于F,求证CE‖DF