如图,在三角形ABC中,角C=90°.CD⊥AB,I1、I2为△CAD、△CDB内切圆直线I1I2交AC于点M,交BC于点N,交CD于点K.求证:CM=CD=CN.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:30:55
如图,在三角形ABC中,角C=90°.CD⊥AB,I1、I2为△CAD、△CDB内切圆直线I1I2交AC于点M,交BC于点N,交CD于点K.求证:CM=CD=CN.
xT[o`+6@ۯP.)Xcc e+695&[.d¹-Neğ(2331ƛ{O{~ żYkvcrDIvcc§M֝J¯ϕ9Ul7v[oB0oU ڭNm"P}ND%2!Nq|wceLd+1GeCWhscZ,/\Ξz||%'fgK'y>LjU.7s^(ZDᄈeIӵ9!CtA lD EabnD¹ )4º32y=FY| BяKH{( ʉ<5 Qץ(Gŗ&u_815oK=t_` Xx5yЬQKc)#j)jI^E|@H3KdۏT$eCּH >T~vuLr8e-Vfӕ̓T)B`0 3 $ АÀ1fہ62 LA~Sk o] G#Bkcw׍*<3TZ]_*N-PI A_v`φ=͸:(:2۩+qޔjNO ^!&h _c`\Ek

如图,在三角形ABC中,角C=90°.CD⊥AB,I1、I2为△CAD、△CDB内切圆直线I1I2交AC于点M,交BC于点N,交CD于点K.求证:CM=CD=CN.
如图,在三角形ABC中,角C=90°.CD⊥AB,I1、I2为△CAD、△CDB内切圆
直线I1I2交AC于点M,交BC于点N,交CD于点K.求证:CM=CD=CN.

如图,在三角形ABC中,角C=90°.CD⊥AB,I1、I2为△CAD、△CDB内切圆直线I1I2交AC于点M,交BC于点N,交CD于点K.求证:CM=CD=CN.
设:圆I1(圆心为I1)和AD的切点为E,和CD的切点为F;圆I2(圆心为I2)和CD的切点为G,和DB的切点为H.在△AEI1和△CGI2中,∠I1AE=∠CAD/2=∠BCD/2=∠I2CG(内切圆性质),∠I1EA=∠I2GC=90°(内切圆性质),所以△AEI1和△CGI2相似,所以GI2/EI1=CG/AE=(CD-GD)/(AD-ED)=(CD-GI2)/(AD-EI1)(四边形I1EDF和I2GDH为正方形),所以GI2/EI1=(CD-GI2+GI2)/(AD-EI1+EI1)=CD/AD(比例性质)①;直线I1I2的斜率为(I2H-I1E)/(GI2+FI1)=(GI2-EI1)/(GI2+EI1)=[(GI2/EI1)-1]/[(GI2/EI1)+1]=[(CD/AD)-1]/[(CD/AD)+1]=(tan∠CAD-1)/(tan∠CAD+1)=(tan∠CAD-tan45°)/(1+tan∠CADtan45°)=tan(∠CAD-45°),所以∠CMN=45°,所以∠CNM=90°-45°=45°,所以△CMN为等腰直角三角形,所以CM=CN②;在△CMI1和△CDI1中,∠MCI1=∠DCI1=∠ACD/2(内切圆性质),∠CDI1=45°(DI1为正方形I1EDF的对角线)=∠CMI1,CI1=CI1(公共边),所以△CMI1和△CDI1全等,所以CM=CD③;综上所述,CM=CD=CN(证毕).

在△AEI1和△CGI2中,∠I1AE=∠CAD/2=∠BCD/2=∠I2CG(内切圆性质),∠I1EA=∠I2GC=90°(内切圆性质),所以△AEI1和△CGI2相似,所以GI2/EI1=CG/AE=(CD-GD)/(AD-ED)=(CD-GI2)/(AD-EI1)(四边形I1EDF和I2GDH为正方形),所以GI2/EI1=(CD-GI2+GI2)/(AD-EI1+EI1)=CD/AD(比例...

全部展开

在△AEI1和△CGI2中,∠I1AE=∠CAD/2=∠BCD/2=∠I2CG(内切圆性质),∠I1EA=∠I2GC=90°(内切圆性质),所以△AEI1和△CGI2相似,所以GI2/EI1=CG/AE=(CD-GD)/(AD-ED)=(CD-GI2)/(AD-EI1)(四边形I1EDF和I2GDH为正方形),所以GI2/EI1=(CD-GI2+GI2)/(AD-EI1+EI1)=CD/AD(比例性质)①;直线I1I2的斜率为(I2H-I1E)/(GI2+FI1)=(GI2-EI1)/(GI2+EI1)=[(GI2/EI1)-1]/[(GI2/EI1)+1]=[(CD/AD)-1]/[(CD/AD)+1]=(tan∠CAD-1)/(tan∠CAD+1)=(tan∠CAD-tan45°)/(1+tan∠CADtan45°)=tan(∠CAD-45°),所以∠CMN=45°,所以∠CNM=90°-45°=45°,所以△CMN为等腰直角三角形,所以CM=CN②;在△CMI1和△CDI1中,∠MCI1=∠DCI1=∠ACD/2(内切圆性质),∠CDI1=45°(DI1为正方形I1EDF的对角线)=∠CMI1,CI1=CI1(公共边),所以△CMI1和△CDI1全等,所以CM=CD③;综上所述,CM=CD=CN(证毕)。 55

收起