三角形Abc,Ab=Ac,Ad是角Bac的平分线,Ae是角Bac的外角平分线,Ce垂直Ae于E1.求证:四边形Adce为矩形2.Abde为平行四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 00:31:54
三角形Abc,Ab=Ac,Ad是角Bac的平分线,Ae是角Bac的外角平分线,Ce垂直Ae于E1.求证:四边形Adce为矩形2.Abde为平行四边形
xSj@~P/4$dd&!dDnlVlx!(UVhTQMwIvw"w3~ѝޟ}xZ}KXL@w7}ר\y <2Yܝ~ywQoG h2N1USmJR]-⌢͵(Kɯ݈(VnǤ ņaDzY/HM=o<}V8`27{ʼn+q !r[5-6RHcx¶%ȂHFe[Hx.W %EKe7Z.2ׁ@8Eh4E sjQj7睝q2X@-`\P>~>`Zh_y(g?> ՄI4$.+hZj2b8k2-m^T ;/lF)=T6 4

三角形Abc,Ab=Ac,Ad是角Bac的平分线,Ae是角Bac的外角平分线,Ce垂直Ae于E1.求证:四边形Adce为矩形2.Abde为平行四边形
三角形Abc,Ab=Ac,Ad是角Bac的平分线,Ae是角Bac的外角平分线,Ce垂直Ae于E
1.求证:四边形Adce为矩形
2.Abde为平行四边形

三角形Abc,Ab=Ac,Ad是角Bac的平分线,Ae是角Bac的外角平分线,Ce垂直Ae于E1.求证:四边形Adce为矩形2.Abde为平行四边形

1、∵AB=AC,AD平分∠BAC,
∴AD⊥BC,即∠ADC=90°,
又∵AE是外角平分线,
∴∠DAE=∠DAC+∠EAC=1/2*180°=90°
又∵∠AEC=90°,
∴四边形ADCE是矩形
 
2、∵四边形ADCE是矩形,
∴AC=BD,AE=DC,
又∵AB=AC,BD=CD,
∴AB=DE,AE=BD,
∴四边形ABDE是平行四边形.