已知函数y= 4cos2x+4 sinxcosx-2,(x∈R). (1)求函数的最小正周期;20. (本小题12分)已知函数y= 4cos2x+4sinxcosx-2,(x∈R).(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:47:40
已知函数y= 4cos2x+4 sinxcosx-2,(x∈R). (1)求函数的最小正周期;20. (本小题12分)已知函数y= 4cos2x+4sinxcosx-2,(x∈R).(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出
xTNA~t2ҤIY]&W%ՋnQ*VL# QXxݙ]xT7W{wē z)۪T% ֞ĔZv/a% 9u eC~̌ 4-'lG1}+sзV080Q> շ c@ %./NIk-jn•^4JE3S1|A1+[n}ekH\TnGIkY)u\^kJ+*l\fuvrzVłe>+wI]"0m] ŷ'xڡKEcAEj?JslanYKCh[ECӵU]uO;93#cv%<\v*+2;rN I?]-5/_C[nMӾ*BygO5XԽEes$f Ap W- PTpKrS4 w? TJӹAd38p^uYDw6LK[~0q_ !kD^?yLG1h_6|Ʊ7bAm`C>}~E @ H'G&$C7hZlxd&99¸8#?z

已知函数y= 4cos2x+4 sinxcosx-2,(x∈R). (1)求函数的最小正周期;20. (本小题12分)已知函数y= 4cos2x+4sinxcosx-2,(x∈R).(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出
已知函数y= 4cos2x+4 sinxcosx-2,(x∈R). (1)求函数的最小正周期;
20. (本小题12分)已知函数y= 4cos2x+4sinxcosx-2,(x∈R).
(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;
(3)写出函数的单调增区间;(4)写出函数的对称轴.

已知函数y= 4cos2x+4 sinxcosx-2,(x∈R). (1)求函数的最小正周期;20. (本小题12分)已知函数y= 4cos2x+4sinxcosx-2,(x∈R).(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出
1、
y=4cos2x+4sinxcosx-2=4cos2x+2sin2x -2 =2√5sin(2x+t) -2,其中tant=2
所以最小正周期T=2π/2=π
还是y=4(cosx)^2+4sinxcosx-2=2cos2x+2 +2sin2x-2=2cos2x+2sin2x=2√2sin(2x+π/4)
最小正周期T=2π/2=π
如果是第一个理解的话,那么后续计算会有些麻烦,而第二种理解则会简单些,但是原理是一样的
以第二种理解为例
2、由1)可知y=2√2sin(2x+π/4)
所以当sin(2x+π/4)=1时,函数取最大值2√2,
此时2x+π/4=2kπ+π/2
解得 x=kπ +π/8
3、由y=sinx的单调增区间为【2kπ-π/2,2kπ+π/2】可知:
当2kπ-π/2≤2x+π/4≤2kπ+π/2时,函数y=2√2sin(2x+π/4) 单调增加,
解2kπ-π/2≤2x+π/4≤2kπ+π/2得,kπ-3π/8≤2x+π/4≤kπ+π/8
,所以函数的单调增区间为[kπ-3π/8,kπ+π/8]
4、正弦函数的对称轴在取最值时取得
因此由sin(2x+π/4)=±1,可得2x+π/4=kπ+π/2
解得x=kπ/2 +π/8
因此函数的对称轴为x=kπ/2 +π/8,k为任意整数

..