设0

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 22:39:21
设0
x){nMR>acdg"tǎgS7<ؔg_$5 u+4jy6 {l lPMREY4 QimZr6Ju[]#{:*6gd -'=7] Z7 B;iSV

设0
设00,a.b为常数,求a^2/x+b^2/(1-x)的最小值

设0
设 y=a^2/x+b^2/(1-x)
要求最小值 即导数为零
y'=-2a^2/(x^2)+2b^2/(1-x)^2=0
整理得 (a^2-b^2)x^2-2a^2x+a^2=0
利用公式解得 x1=(2a^2+√(4a^4-4a^2(a^2-b^2)))/2(a^2-b^2)
x2=(2a^2-√(4a^4-4a^2(a^2-b^2)))/2(a^2-b^2)
则 x1=a/(a-b) x2=a/(a+b)
因为0