(1)a^4b-5a²b+4b (2)3m³n-6m²n²-72mn³ (3)x^4-10x²y²+9y^4( 4) x^4-13x²y²+36y^4 (5)x^4-8x²y²+16y^4 (7)a³-5a²b-24ab²(8)3ab²-9a²b²+6a³b²为了能使

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:58:06
(1)a^4b-5a²b+4b (2)3m³n-6m²n²-72mn³ (3)x^4-10x²y²+9y^4( 4) x^4-13x²y²+36y^4 (5)x^4-8x²y²+16y^4 (7)a³-5a²b-24ab²(8)3ab²-9a²b²+6a³b²为了能使
xRN@L:3J&~1;D &LąFčIg:V(>ع`=sΝ'5mn5p-4ih "d3D@"OUjj.և>bKlAbKHQYEV|0 B IUH#g!_tܚonQ\m*êGhOsPA?ogW#>eib/YwuG{?޿"wׅu:JyǷ'Eާ[lxa!A`J0G!;4ZO hXSD+Xaӑe|hccT` RPf E/>%aiս;U;ӮdKY/U H^T̫g#yq,3"O~OP

(1)a^4b-5a²b+4b (2)3m³n-6m²n²-72mn³ (3)x^4-10x²y²+9y^4( 4) x^4-13x²y²+36y^4 (5)x^4-8x²y²+16y^4 (7)a³-5a²b-24ab²(8)3ab²-9a²b²+6a³b²为了能使
(1)a^4b-5a²b+4b (2)3m³n-6m²n²-72mn³ (3)x^4-10x²y²+9y^4
( 4) x^4-13x²y²+36y^4 (5)x^4-8x²y²+16y^4 (7)a³-5a²b-24ab²
(8)3ab²-9a²b²+6a³b²
为了能使多项式x²+mx+24在整数范围内因式分解,那么m可能的取值有哪些?

(1)a^4b-5a²b+4b (2)3m³n-6m²n²-72mn³ (3)x^4-10x²y²+9y^4( 4) x^4-13x²y²+36y^4 (5)x^4-8x²y²+16y^4 (7)a³-5a²b-24ab²(8)3ab²-9a²b²+6a³b²为了能使
(1)b(a-1)(a+1)(a-2)(a+2) (2)3mn(m-6n)(m+4n)
(3)(x-y)(x+y)(x-3y)(x+3y) (4)(x-2y)(x+2y)(x-3y)(x+3y)
(5)(x^2-4y^2)^2 (7)a(a+3b)(a-8b)
(8)3ab^2(a-1)(2a-1)
x^2+mx+24能分解因式,要求
方程x^2+mx+24=0有解
m^2-96>=0,即m>=根号96或吗