已知x-y=1,x^2+y^2=3,求x^6-y^6的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 12:46:10
xSn@~*Rnb{wa]۱&&" V"EHHBT(*i"&(vW`@㊜vfoxqPlkv
nG].uy{*/Ruz˓_۽p9z1fI8:5&{_axљtޗfOWܝcso7D9w睒zNKp{%8i4&!&
ﻵ&AULDT `\el*ī`eSZX!,h mS-R$EsXl2
,#I *BggԫÌVQpjxxy-Щ:O++c6̇XUMʪ=ieܪWto?1Phf\1wvQ]d=[yȉ|(f9%ھz3С_8fVc/є'٤pM7KASA\#>Kܿ/ Gnb c _
已知x-y=1,x^2+y^2=3,求x^6-y^6的值
已知x-y=1,x^2+y^2=3,求x^6-y^6的值
已知x-y=1,x^2+y^2=3,求x^6-y^6的值
说明:本题主要是对平方和及平方差公式的灵活应用.
x-y=1 (x-y)^2=1^2 x^2+y^2-2xy=1 3-2xy=1 xy=1 (x+y)^2=x^2+y^2+2xy=3+2=5 所以x+y=±√5 于是 x^6-y^6 =1*(3+1)*(±√5)*(3-1) =4*(±√5)*2 =±8√5
=(x^3-y^3)(x^3+y^3)
=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)
答:
x-y=1
x^2+y^2=3
所以:(x-y)^2=x^2-2xy+y^2=3-2xy=1
解得:xy=1
所以:(x+y)^2=x^2+2xy+y^2=3+2=5
解得:x+y=±√5
x^6-y^6
=(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)
=1×(±√5)×(3+1)×(3-1)
=±8√5