设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点延长GP并在其延长线上取一点D,使PD=PC,求证:BC⊥BD且BC=BD要完整的过程才有分!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:27:43
xQN1~=SL$u^A}!,$F8 cr1 BzOƃ|3|
y՛&!p<O^<,nuth3x"<vks1:Gz|G,ǃfd++SHFFH:DL"p(p?cuDx8e+^=n$Niŝ@Vז2,W[k`o"ڞ<$sCe8x+
dIqٜ7tL{| @P)yPdbeSZvE%NM'v!Qvg? *
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点延长GP并在其延长线上取一点D,使PD=PC,求证:BC⊥BD且BC=BD要完整的过程才有分!
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点
延长GP并在其延长线上取一点D,使PD=PC,求证:BC⊥BD且BC=BD
要完整的过程才有分!
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点延长GP并在其延长线上取一点D,使PD=PC,求证:BC⊥BD且BC=BD要完整的过程才有分!
∠DPB=∠APG=∠APE+∠EPG=45°+∠EPG.
∠CPB=∠FPB+CPF=45°+∠CPF,
∠EPG=∠GFP=90°-∠GPF,
∠CPF=∠GFP ,
∠DPB=∠CPB,
DP=CP,BP=BP,
△DPB≌△CPB,
BD=BC,
∠DBP=∠CBP=45°,∠DBC=∠DBP+∠CBP=90°,BC⊥BD.
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点延长GP并在其延长线上取一点D,使PD=EF,求证:CD⊥AB要完整的过程才有分!
初三几何证明题,竞赛题,关于平行四边形的,设点P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC垂直BD,且BC=BD.
设点P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点延长GP并在其延长线上取一点D,使PD=PC,求证:BC⊥BD且BC=BD要完整的过程才有分!
已知D为等腰直角三角形ABC边BC上任一点,说明2AB平方=BD平方+CD平方BC是斜边
点P是等腰直角三角形ABC斜边BC的中点,以P为顶点的直角交AB,AC于EF,证明:PEF为等腰直角三角形
点P是等腰直角三角形ABC斜边BC的中点,以P为顶点的直角交AB,AC于EF,证明:PEF为等腰直角三角形
如图,在等腰直角三角形ABC中,∠ACB=90,P是斜边AB上的一个动点(P不与A,B)如图,在等腰直角三角形ABC中,∠ACB=90度,P是斜边AB上的一个动点(P不与A,B点重合),D为BC边上的一点(D不与B,C点重合),
如图,在等腰直角三角形ABC中,∠ACB=90°,D为斜边AB上任一点,AE⊥CD于E,BF⊥CD,交CD的延长线于点F,CH⊥AB于H,交AE于点G,求证BD=CG
在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM的长小于AC的概率
几何概型中的一个经典问题在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.这个答案是0.707在等腰直角三角形ABC中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM
D为等腰直角三角形ABC斜边的中点,延长BC并在其上任取一点P,分别作PE,PF垂直于BA,AC的延长线,E,F为垂足.
如图,三角形ACB为等腰直角三角形,E,F在斜边AB上,角ECF=45°,三角形CEF全等于三角形CGF,连AG,若BE=3,AF=如图,三角形ACB为等腰直角三角形,E,F在斜边AB上,角ECF=45°,三角形CEF全等于三角形CGF,连AG,若BE=3
如图,已知△ABC为等腰直角三角形,∠ACB=90°,AC=BC,点A.C在X轴上,点B的坐标为(3,m)(m>0),线段AB与Y轴相交于点D,以P(1,0)为顶点的抛物线过点B,D.(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长与
在三角形ABC中,以AB,AC为斜边分别作等腰直角三角形ABM和三角形ACN,P为BC的中点,求证MP=NP
已知线段AB 求作一个以线段AB为斜边的等腰直角三角形
设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于点G,延长GP并在其延长线取一点D,使得PD=EF,连结CD,求证:CD⊥AB
如图,△ABC是等腰直角三角形,∠ACB=90°,M,N为斜边AB上两点,如果∠MCN=45°,证明:AM,MN,NB可以构成一个直角三角形.
已知点P为等腰直角三角形ABC的斜边AB上一点,说明AP的平方+BP的平方=2CP的平方