当一个函数的定义域为R,求这个函数里面的参数范围这个函数里面有x和k而且是以反比例函数的形式上边是2kx+8下边是kx²+2kx+1(不好意思不会打分式.)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:34:42
当一个函数的定义域为R,求这个函数里面的参数范围这个函数里面有x和k而且是以反比例函数的形式上边是2kx+8下边是kx²+2kx+1(不好意思不会打分式.)
xRQoP+}20І ?W}!.&Zq&q@氬-y_ܶ1|{\j:-{7Єj]=~?ӭy$P<\O؞2zZ5K6T+[&*^1 bU+[Sı

当一个函数的定义域为R,求这个函数里面的参数范围这个函数里面有x和k而且是以反比例函数的形式上边是2kx+8下边是kx²+2kx+1(不好意思不会打分式.)
当一个函数的定义域为R,求这个函数里面的参数范围
这个函数里面有x和k而且是以反比例函数的形式上边是2kx+8下边是kx²+2kx+1(不好意思不会打分式.)

当一个函数的定义域为R,求这个函数里面的参数范围这个函数里面有x和k而且是以反比例函数的形式上边是2kx+8下边是kx²+2kx+1(不好意思不会打分式.)
y=(2kx+8)/(kx^2+2kx+1)=(2kx+8)/[k(x+1)^2-k+1],定义域为R,-k+1>0,所以k<1

定义域为R,就是分母始终有意义。
k=0时始终满足。
k不等于0时,kx^2+2kx+1=0无解。
判别式4k^2-4k不等于0
k(k-1)不等于0
k不等于1。

0= 分析:函数为(2kx+8)/(kx^2+2kx+1)要使该函数的定义域为R,那么必须使得kx^2+2kx+1在x为任意实数的情况下不能为0,即方程kx^2+2kx+1=0无解
那么①k=0 kx^2+2kx+1=1 满足条件
②k不等于0 那么 (2k)^2-4*k*1<0 即k^2-k<0 所以0 故综上所...

全部展开

0= 分析:函数为(2kx+8)/(kx^2+2kx+1)要使该函数的定义域为R,那么必须使得kx^2+2kx+1在x为任意实数的情况下不能为0,即方程kx^2+2kx+1=0无解
那么①k=0 kx^2+2kx+1=1 满足条件
②k不等于0 那么 (2k)^2-4*k*1<0 即k^2-k<0 所以0 故综上所述 0=

收起