函数-方程-系数已知:关于x的方程kx^2-2(k+1)x+k-1=0有实数根(1)求 k的取值范围(2)设方程的两个实数根分别为x1,x2(x1<x2),若y是关于k的函数,且y=kx2-kx1,求这个函数的解析式.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:40:32
函数-方程-系数已知:关于x的方程kx^2-2(k+1)x+k-1=0有实数根(1)求 k的取值范围(2)设方程的两个实数根分别为x1,x2(x1<x2),若y是关于k的函数,且y=kx2-kx1,求这个函数的解析式.
函数-方程-系数
已知:关于x的方程kx^2-2(k+1)x+k-1=0有实数根
(1)求 k的取值范围
(2)设方程的两个实数根分别为x1,x2(x1<x2),若y是关于k的函数,且y=kx2-kx1,求这个函数的解析式.
函数-方程-系数已知:关于x的方程kx^2-2(k+1)x+k-1=0有实数根(1)求 k的取值范围(2)设方程的两个实数根分别为x1,x2(x1<x2),若y是关于k的函数,且y=kx2-kx1,求这个函数的解析式.
(1)
kx^2-2(k+1)x+k-1=0有实数根,则
①k=0时,-2x-1=0 得 x=-1/2满足
①k≠0时,
Δ=[-2(k+1)]^2-4k(k-1)≥0
4k^2+8k+4-4k^2+4k≥0
12k≥-4
k≥-1/3
综上,所求k的取值范围为k≥-1/3
(2)
由(1)得,方程有两个实数根x1,x2(x1<x2),则k>-1/3且k≠0.
x1+x2=2(k+1)/k x1x2=(k-1)/k
(x2-x1)²=(x1+x2)²-4x1x2
=[2(k+1)/k]²-4(k-1)/k
=(4k²+8k+4)/k²-(4k²-4k)/k²
=(12k+4)/k²
x2-x1=√[(12k+4)/k²]=√(12k+4)/k
∴y=kx2-kx1=k(x2-x1)=k*√(12k+4)/k=√(12k+4)=2√(3k+1) (k>-1/3且k≠0)
即这个函数的解析为y=2√(3k+1) (k>-1/3且k≠0)
1、有实根即Δ≥0
[-2(k+1)]^2-4k(k-1)≥0
k≥1/3
2、x1+x2=-b/a=2(k+1)/k
x1.x2=c/a=(k-1)/k
x1-x2=√ (x1+x2)^2-4x1.x2
=√ [2(k+1)/k]^2-4(k-1)/k
=√ 4(k^2+2k+1)/k^2-4(k-1)/k
=2/k √ k^2+2k+1-k^2+k
=2/k √ 3k+1
y=kx2-kx1
=k(x2-x1)
=-2 √ 3k+1