设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:45:48
设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]
x){nϦnx:gF]/{{P@P@i[Oy~V/7?0@Ov4Ov}ڰY'=@>7^y@N5pT5ԗ5xڻb ⠸ 1M(

设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]
设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]

设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]
构造函数G(x)=f(x)-(x的平方)[f(1)-f(0)]
G(1)=f(1)-[f(1)-f(0)]=f(0)
G(0)=f(0)-0=f(0)由柯西中值定理知
存在一点ξ 使得G'(ξ )=0
G'(x )=f'(x )-2x[f(1)-f(0)]
G'(ξ )=f'(ξ )-2ξ[f(1)-f(0)]=0即存在点ξ 使得f'(ξ )=2ξ[f(1)-f(0)]