已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:①都与X轴有交点;②与Y轴相交于同一点(1)求m、n的值(2)试写出X为何值时,Y1>Y2(3)试描述抛物线C1通过怎样的

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:17:18
已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:①都与X轴有交点;②与Y轴相交于同一点(1)求m、n的值(2)试写出X为何值时,Y1>Y2(3)试描述抛物线C1通过怎样的
xTMOQ+j 39&2nlRd؍: XHJ`^tAߝ͇N w޽{}D+fe3SVo)%+_'ɲ$;OO yScwa1lka]jfw>L]CԪ^6כF*A Ei;oaJ,5LxڒdoZwM5gV;}*EJ;s͟"9JH4\_G5>yUn( b#+ݦF<=]Cjdp(Gfqm]I_͠D:܉EPů0Z4aUk3ɤXe]^m_@ _N;P@XHK]b׺܃"Gymi:];Lh'J%_wʭL($T1P,xFN~3lMG[C6w|@En@~,\%_, ~V늋ꌄ=b쬍́g"A! _1&i=VƃK [,do13ĊgcN72cQ^b1$Nl@o)K"sY$,ESV-A㘞2S/R^+~ܗH5Wx'@!!唰}oCpG䍊ZATNYa r^u

已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:①都与X轴有交点;②与Y轴相交于同一点(1)求m、n的值(2)试写出X为何值时,Y1>Y2(3)试描述抛物线C1通过怎样的
已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:
①都与X轴有交点;②与Y轴相交于同一点
(1)求m、n的值
(2)试写出X为何值时,Y1>Y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2

已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:①都与X轴有交点;②与Y轴相交于同一点(1)求m、n的值(2)试写出X为何值时,Y1>Y2(3)试描述抛物线C1通过怎样的
已知:抛物线C1:y1=x²-(m+2)x+1/2m²+2与C2:y2=x²+2mx+n具有下列特征:
①都与X轴有交点;②与Y轴相交于同一点
(1)求m、n的值
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
显然两条抛物线均开口向上;
对于C1:Δ1=(m+2)²-4(1/2m²+2)=-(m-2)²≤0,但C1与x轴有交点,∴Δ1≥0,
∴-(m-2)²=0,m=2■,∴C1:y1=x²-4x+4=(x-2)²,它与y轴的交点为(0,4);
对于C2:m=2代入,方程化为y2=x²+4x+n,又它与y轴的交点亦为(0,4),
代入求得n=4■,∴C2:y2=(x+2)²;因为C1、C2与y轴的交点为(0,4),∴
当x<0时,y1>y2 ■;
比较两条抛物线的方程可知,他们的焦参数p均为1/2,所以形状相同,
又C1、C2的顶点分别为(2,0),(-2,0),∴C1向x轴负方向移动4个单位即得到C2■

(1)由C1知:△=(m+2)2-4×(12m2+2)=m2+4m+4-2m2-8=-m2+4m-4=-(m-2)2≥0, ∴m=2. 当x=0时,y=4.∴当x=0时,n=4; (2)令y1>y2时,x2-4x+4>x2+4x+4, ∴x<0. ∴当x<0时,y1>y2; (3)由C1向左平移4个单位长度得到C2.

已知抛物线C1与抛物线C2关于x轴对称,且抛物线C1的解析式是y=-x²+2ax-8(a²>8)(1)写出抛物线C1的开口方向、定点坐标、对称轴及抛物线C2的解析式(2)证明抛物线C1与C2有两个交点,并 已知抛物线C1的解析式为y=2(x-1)²+3,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式 已知抛物线y=x²-2x+a(a 已知抛物线y=x²-2x+a(a 已知抛物线C1 y=(x-2)2+3,若抛物线C2与抛物线C1关于y轴对称,则抛物线C2解析式为 若抛物线C3与抛物线C1关于x轴对称,则C3的解析式为 已知抛物线C1:y=x² +2x和C2 :y=-x² +a如果直线l同时是C1和C2的切线称l是C1和C2的公切线问a取什么值时,C1和C2有且仅有一条公切线写出公切线的方程 若椭圆C1:x²/4+y²/b²=1的离心率为根号3/2,抛物线C2:x²=2py的焦点在椭圆C1的顶点上求抛物线C2的方程 已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 已知抛物线C1的解析式是 抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.已知抛物线C1的解析式是y=x^2-4x+5 抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式. 已知曲线C1:y=x²与C2:y=-(x-2)²,若直线L与C1、C2都相切,求L方程 已知抛物线C1:y=x2-4x-3,求关于x轴对称的抛物线C2的解析式 已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:①都与X轴有交点;②与Y轴相交于同一点(1)求m、n的值(2)试写出X为何值时,Y1>Y2(3)试描述抛物线C1通过怎样的 已知抛物线C1:y=x*2-2x-3,将C1绕点(0,-2)旋转180°得抛物线C2,求C2解析式 已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若若直线y=x+b(b>0)与抛物线共有三个交点,求b的值 已知抛物线C1:y=-2x²-2x+1,抛物线C2:y=2x²-2x-1,若两抛物线关于原点对称称为“同胞”抛物线(1)试判断C1与C2是否为“同胞”抛物线.(2)已知抛物线C1:y=负二分之一x²-x+三分之二其 已知抛物线C1:y=2x^2与抛物线C2关于y=-x对称,则抛物线C2的准线方程为 已知抛物线C1:y=三分之二x²+三分之六x+8与抛物线c2关于y轴对称求抛物线c2的解析式 如图,已知抛物线C1:y=2/3x的平方+16/3x+8与抛物线C2关于y轴对称,求抛物线C2的解析式