求z=√(5-x^2-y^2 )和x^2+y^2=4z所围体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:48:58
xn@_eRx<_n XPƷ@S^Y@#7MQE U+ehH w@DYgݝ͙z<22%Ry@
,6p4ފi$nG1QVQ=1
(xVpS^&U&Fo[o.[:b诮kGl
AZL AXumh MtM
+X&5!C
u#%Lj1U}0J,XY"5X,hZGB,\b\̈́
M,<4"b@Ph32$@w677ot$&mu4NvAz1tO'דW}ȭۼHOo݅CIv7yOu̗MWư٫pGP^6^w*(`6gJ>P*p!(JXŢoDS% vTfy~n:;a|aYZ)gg_8(W.jes1NCU
求z=√(5-x^2-y^2 )和x^2+y^2=4z所围体积
求z=√(5-x^2-y^2 )和x^2+y^2=4z所围体积
求z=√(5-x^2-y^2 )和x^2+y^2=4z所围体积
先求相交面:z^2+4z-5=0 ,得到z=1 即圆 x^2+Y^2=4
把相交区域分割成为相交面上方的球冠体积 加上 下方的平面与 X^2+Y^2=4z 曲线包围的平面.
球冠高度为:√5-1
球冠体积:π(h*h)(R-h/3) =π(√5-1)^2*(√5-(√5-1)/3) = (10√5-14)π/3
平面与曲线包围的面积:(π*4z)dz,积分区间为[0,1],所以体积为2π
总体积为2π+(10√5-14)π/3