在三角形ABC中角A,B,C的对边a,b,c.设向量m=(a,cosB),向量n=(b,cosA),且向量m平行于向量n,且向量m不等于向量n.(1)求证A+B=90度,并求sinA+sinB的取值范围,(2)设sinA+sinB=t,将(sinA+sinB)/sinAsinB表示成t的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:31:37
在三角形ABC中角A,B,C的对边a,b,c.设向量m=(a,cosB),向量n=(b,cosA),且向量m平行于向量n,且向量m不等于向量n.(1)求证A+B=90度,并求sinA+sinB的取值范围,(2)设sinA+sinB=t,将(sinA+sinB)/sinAsinB表示成t的
xRNPmXeQɎdH ]mb#RA HMGAvM|ڬ8 $3sqTugcLNja 9TlO)cdU|eb!UߔиjƔf]lh`-*W ?Bql[>w`M^~XEXPSK x$g`Љ[uR u 9\BR Dq N#/x%&ZbjϝN:_

在三角形ABC中角A,B,C的对边a,b,c.设向量m=(a,cosB),向量n=(b,cosA),且向量m平行于向量n,且向量m不等于向量n.(1)求证A+B=90度,并求sinA+sinB的取值范围,(2)设sinA+sinB=t,将(sinA+sinB)/sinAsinB表示成t的
在三角形ABC中角A,B,C的对边a,b,c.设向量m=(a,cosB),向量n=(b,cosA),且向量m平行于向量n,
且向量m不等于向量n.(1)求证A+B=90度,并求sinA+sinB的取值范围,(2)设sinA+sinB=t,将(sinA+sinB)/sinAsinB表示成t的函数f(t),并求出y=f(t)的值域.

在三角形ABC中角A,B,C的对边a,b,c.设向量m=(a,cosB),向量n=(b,cosA),且向量m平行于向量n,且向量m不等于向量n.(1)求证A+B=90度,并求sinA+sinB的取值范围,(2)设sinA+sinB=t,将(sinA+sinB)/sinAsinB表示成t的
问的有点多啊
首先 向量m平行于向量n 则有a/b=cosB/cosA 再由正弦定理得a/b=sinA/sinB 可得等式sinA*cosA=sinB*cosB 又因为向量m不等于向量n 所以A+B=90°
sinA+sinB=sinA+cosA=根号2 *sin(A+45°) 得解
sinA+sinB=t 即sinA+cosA=t 左右平方得 1+2sinA*cosA=t^2 即sinAsinB=(t^2-1)/2 得解
再根据t的范围求值域就行了