1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 20:35:30
1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选
xT[OG+)RPޫMqH}[+vۀSUB Y`[ .&$ZB _c?ݙ]?/̎RE/U$w|wl?PmT=/vu4ݘs猉wm;@34?ebƏNWN3sGVmL(}pθnN+fF0/W򰳧iGn{=i N a{Sg!*ם1^/x]pcX#T?UEzMj:7@@Ӂ.Cm-p~G5CWɟ1Gif} X4T^omҺm^7 ī!^vBEVE |b.?oUVF:MѢ(x'?Q AO 4eOG͕4qO-*5ݳgPW&]v8,x Sм RPtp*ኴyLj<QPT{w9&f`LU˫-}pujA/+/ť(r^G~lTX>Ng&SG u:el.c䷁CL6[dd# DZ* 1Q$Sa1A9R"œLrB$ɂ(5İ"!Kq qJPI)Hc.i9$x2(B䃊$+dN{rܽfF0 @=&6 TP6B!b$65LU ~Ff?ĝ2#[&C3kĬExro7z|Vibػ P\Jфmv)$y$!(@6"-\.c؂ h

1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选
1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正 边形ABCD…X”,请你作出猜想:当∠AMN
= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
题是有点多……那就第一题吧,就第一题…!

1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选
(1)因为AE=MC,所以BE=BM,又角B=90度,所以角BEM=135度,又角NCM=45+90=135度
所以角NCM=角MEA,AE=CM,.角NMC=角MAE,故三角形NCM全等于三角形MEA(ASA),故AM=MN.
(2)与(1)类似;
(3)结论是成立的,角AMN=180-180/n时,AM=MN.

)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线 如图,在正方形ABCD中,M是BC的中点,E是BC延长线上的一点,MN垂直于AM,交角DCE的平分CN于点N(1)求证MA=MN(2)若将上述条件中的“M是BC的中点”改为“M是BC上的任意一点”其余条件不变,则结论MA=M 如图 在正方形ABCD中,E是对角线AC上一点,EF⊥BC于F,EG⊥CD于G.(1)四边形EFCG是正方形吗?说明理由如图 在正方形ABCD中,E是对角线AC上一点,EF⊥BC于F,EG⊥CD于G.(1)四边形EFCG是正方形吗?说明理由 如图1,在正方形ABCD中,M是BC边上任意一点,P是BC延长线上一点,N是角DCP的平分线一点.若角AMN=90°,求 如图,O是正方形ABCD的重心,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM,交AC于点N,连接OM、ON.求证:(1)OM=ON (1)如图,在正方形ABCD中,M是边BC(不含端点B.C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN (2)如图(2)若将(1)中的正方形 如图,在等腰梯形ABCD中,AD//BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)求证:四边形MENF是菱形.(2)若四边形MENF是正方形3,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的 如图,在正方形ABCD中,M是AB上一点,且DM=BC+BM,N是BC的中点.求证:DN平分∠CDM 如图在正方形ABCD中,E是DC的中点,F是BC上的点,AE平分∠DAF,求证,CF=1/4*BC 已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证 AF=BC+FC如果FC=1cm,求正方形ABCD的边长 如图,已知点O是正方形ABCD的重心 如图,已知点O是正方形ABCD的重心,在正方形ABCD的BC边上任取一点M,过点C作CN垂直于DM,交AB于点N,连接OM,ON,求证:(1)OM=ON(2)OM垂直于ON 如图在正方形ABCD中,E为AB中点,F是BC上一点,且BF=1/4BC,求证DE⊥EF 如图在正方形ABCD中,E为DC的中点,F是BC上的一点,且CF=1/4BC,求证 AE平分角DAF 如图在正方形ABCD中,E为DC的中点,F是BC上的一点,且CF=1/4BC,求证 AE平分角DAF 如图,正方形ABCD中,点E是CD的中点,点F在BC上,且CF:BC=1:4,求证△AEF∽△ADE (2012•鸡西)如图1,在正方形ABCD中,点M,N分别在AD,CD上,若∠MBN=45°,易证MN=AM+CN(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB 在四边形ABCD中,点M、N分别在AB、BC上,且MN=AM+CN.如图1,若四边形ABCD为正方形,则角MDN=?如图2... 如图,正方形ABCD中,点P是对角线BD的中点,M,N分别在边BC,AB上,PM垂直PN 求证:四边如图,正方形ABCD中,点P是对角线BD的中点,M,N分别在边BC,AB上,PM垂直PN求证:四边形PMBN的面积等于正方形ABCD面积的四分