用函数单调性的定义证明:f(x)=a^x+a^(-x)在(0,正无穷)上是增函数(这里a>0且a不等于1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:21:46
用函数单调性的定义证明:f(x)=a^x+a^(-x)在(0,正无穷)上是增函数(这里a>0且a不等于1)
xPN0[I;s *D6@Ҫ%BUB) b S~% ~w;ˆ}J J_IW%r饞<9Cpx yEOz2/^߫<ٵqVrFd62X~ цArJr;AQ5

用函数单调性的定义证明:f(x)=a^x+a^(-x)在(0,正无穷)上是增函数(这里a>0且a不等于1)
用函数单调性的定义证明:f(x)=a^x+a^(-x)在(0,正无穷)上是增函数(这里a>0且a不等于1)

用函数单调性的定义证明:f(x)=a^x+a^(-x)在(0,正无穷)上是增函数(这里a>0且a不等于1)
对任意x1>x2>0
f(x1)-f(x2)=a^x1+a^(-x1)-a^x2-a^(-x2)=(a^x1-a^x2)+[a^(-x1)-a^(-x2)]=(a^x1-a^x2)+(1/a^x1-1/a^x2)
=(a^x1-a^x2)+(a^x2-a^x1)/a^x1×a^x2=(a^x1-a^x2)(1-1/a^x1×a^x2)
若00,f(x1)>f(x2),f(x)在(0,+∞)上是单调增函数