已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:44:58
已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx
xP=K@+ ᖀ#!ܖRJ+F OQ1G W*`7yyo|_LMuTd"^gӦzrL_Gptg/xT&?;N푷|;b`}|< Y&@k3CŚ bYahQ  pf1+D$T}1tb1lIr{7q㯞y0F966ZAէL ++Aa}7Jڝc>ER{0a>7vpo\?y;h

已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx
已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx

已知f(x)的一个原函数为e^(x^2),求∫xf'(2x)dx
已知f(x)的一个原函数为e^(x^2),原函数求导得到f(x)
那么f(x)=[e^(x^2)]*2x,f(2x)=[e^(4x^2)*4x
∫xf'(2x)dx =(1/2)∫xf'(2x)d2x =(1/2)∫xdf(2x)=(1/2)[xf(2x)-∫f(2x)dx ]
=xf(2x)/2-(1/4)∫f(2x)d2x
=(2x^2)(e^(4x^2)-(1/4)e^(x^2)

∵f(x)的一个原函数为e^(x^2),
∴f(x)=2x*e^x²
∴原式=∫x[1/2*f(2x)]dx=x*[1/2*f(2x)]-∫[1/2*f(2x)]dx=x/2*f(2x)-1/4∫f(2x)d(2x)=x/2*f(2x)-1/4*e^(2x)²+c
=x/2*2x*e^(2x)²-1/4*e^(4x²)+c=x²e^(4x²)-1/4*e^(4x²)+c