由直线y=x+2上的点向圆(x-4)²+(y+2)²=1引切线,则切线的最小值为我不知道为啥垂直时最小,麻烦传图解释
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 09:31:24
xJ@F$$Y
f"BA@4w֪b[ E&4"lrWpm!ׂ x|0gϙY(+yh⊀"EMReF'Hn
L8`[T)}*GU^@5ylw#CnZwu?X}ҘD=Cj#WC?J&%.ZC4QB;/DeOe3^&f/u"J^'yn3&Fy)"2L×=2FIjt.2~aH^$5SRRu?,Bϡ828'>
由直线y=x+2上的点向圆(x-4)²+(y+2)²=1引切线,则切线的最小值为我不知道为啥垂直时最小,麻烦传图解释
由直线y=x+2上的点向圆(x-4)²+(y+2)²=1引切线,则切线的最小值为
我不知道为啥垂直时最小,麻烦传图解释
由直线y=x+2上的点向圆(x-4)²+(y+2)²=1引切线,则切线的最小值为我不知道为啥垂直时最小,麻烦传图解释
圆心(4,-2),过圆心与直线y=x+2垂直的方程为
y+2=-(x-4)
即
x+y-2=0
联立方程组得
x=0,y=2
(0,2)到圆心距离为
√(4^2+4^2)=4√2
所以最短切线长为
√[(4√2)^2-1^2)=√31
圆心(4,-2),过圆心与直线y=x+2垂直的方程为
y+2=-(x-4)
即
x+y-2=0
联立方程组得
x=0,y=2
(0,2)到圆心距离为
√(4^2+4^2)=4√2
所以最短切线长为
√[(4√2)^2-1^2)=√31