求微分方程满足初始条件的特解(1)y〃-4y′+3y=0,y(0)=6,y′(0)=10;(2)y〃+y=-sin2x,y(π)=1,y′(π)=1大一高数,做对追分,
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:06:55
xSn@1&$`"wΫEQKTEIDF8Rz\ϘGLm{y8[Ʌڧ};q裡5E0lAoսqj:uH@)hGӛKEEQl(V\;~a]o:pdL$G^e\dG
VWϢg1nIxRMvyUQm4NĖxSEB *1pfzfdk-LBXDFx8]֜0-91o̙{Wܤj#1qQxٝqվƋR4*A{=\s
$Bc*"KqHk\ bAJsp1iR_ B_HkL1$)DV۹{fJ
求微分方程满足初始条件的特解(1)y〃-4y′+3y=0,y(0)=6,y′(0)=10;(2)y〃+y=-sin2x,y(π)=1,y′(π)=1大一高数,做对追分,
求微分方程满足初始条件的特解(1)y〃-4y′+3y=0,y(0)=6,y′(0)=10;(2)y〃+y=-sin2x,y(π)=1,y′(π)=1
大一高数,做对追分,
求微分方程满足初始条件的特解(1)y〃-4y′+3y=0,y(0)=6,y′(0)=10;(2)y〃+y=-sin2x,y(π)=1,y′(π)=1大一高数,做对追分,
1.
y〃-4y′+3y=0
特征方程为r^2-4r+3=0
特征根r1=1,r2=3
齐次方程通解为y=C1e^x+C2e^(3x)
初始条件y(0)=6,y′(0)=10
得C1+C2=6,C1+3C2=10
解得C1=4,C2=2
特解为y=4e^x+2e^(3x)
2.
y〃+y=-sin2x
对应齐次方程特征方程为
r^2+1=0
特征根r1,2=±i
对应齐次方程通解为
y=c1sinx+c2cosx
又2i不是特征根可设其特解为
y*=asin2x+bcos2x
代入有-3asin2x-3bcos2x=-sin2x解得a=1/3,b=0
特解为y*=(1/3)sin2x
非齐次方程通解为
Y=y+y*=c1sinx+c2cosx+(1/3)sin2x
初值条件y(π)=1,y′(π)=1得
-c2=1,-c1+2/3=0解得c1=2/3,c2=-1
非齐次方程特解为
y=(2/3)sinx-cosx+(1/3)sin2x
求微分方程xy’+x+y=0满足初始条件y(1)=0的特解
求微分方程xy'+y+xe^x=0满足初始条件y(1)=0的特解
求微分方程ylny+xy'=0满足初始条件y(1)=e的特解,
求微分方程满足所给初始条件的特解
微分方程满足初始条件的特解怎么求
求微分方程满足所给初始条件的特解
求微分方程满足所给初始条件的特解,
求下列微分方程满足初始条件的特解,急用,
求下列微分方程满足初始条件的特解,急用,
y=(y')^1/2 y=0 y'=1 求微分方程满足初始条件的特解
求微分方程(x-1)y'=y(1+2xy)满足初始条件y(0)=1的特解
求微分方程y'+2y=e^x满足初始条件y(0)=1/3的特解
求微分方程y'=y+x满足初始条件y|x=0=1的特解
微分方程Y`=x-y满足初始条件y(0)=0的特解
微分方程 y'+y=1 满足初始条件y(0)=0的特解
求微分方程dy/dx=y/x满足初始条件y|x=1=1的特解
求微分方程满足初始条件的特解xy'+y=Inx/x y|(x=1)=1/2
求微分方程y'=(x^2+1)/(1+tany)满足初始条件y(0)=0的特解