求证:函数f(x)=x^3-3x在[1,正无穷)上是增函数.2.已知幂函数f(x)的定义域是{x|x不等于0},且它的图像关于y轴对称,写出一个满足要求的幂函数。3.已知函数f(x)=(ax+1)/(x+2),a属于整数。是否存在

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:31:56
求证:函数f(x)=x^3-3x在[1,正无穷)上是增函数.2.已知幂函数f(x)的定义域是{x|x不等于0},且它的图像关于y轴对称,写出一个满足要求的幂函数。3.已知函数f(x)=(ax+1)/(x+2),a属于整数。是否存在
xTNPj"C_)]PqV;6G!)@$ IwU~s}ASvTꢕk]ϙsΌ,ɴtZU܈Vګ^շF# +6OΑ}q3t_-rlP Wۨ ymWpU% *NIeJ1[H![gt h#{~/yYYddb yEA5`KgEmס'w e \O1VQyJ@䊌蠇jXJ-:2~; bRhMs@␯S#$J˝qmpQ1q<U?6v<LubLBg/D1NfaefZòӪ`z{%O7Ir/8͜k@}ݰ1U=~FϏj1_h><}a,5pX&Xqhlx!>|EEEd||g:TI=S]}Eq|( "re'4\g(k+De<~'G ߝc 329t*(9 3|v+gZ9nD~]yW

求证:函数f(x)=x^3-3x在[1,正无穷)上是增函数.2.已知幂函数f(x)的定义域是{x|x不等于0},且它的图像关于y轴对称,写出一个满足要求的幂函数。3.已知函数f(x)=(ax+1)/(x+2),a属于整数。是否存在
求证:函数f(x)=x^3-3x在[1,正无穷)上是增函数.
2.已知幂函数f(x)的定义域是{x|x不等于0},且它的图像关于y轴对称,写出一个满足要求的幂函数。
3.已知函数f(x)=(ax+1)/(x+2),a属于整数。是否存在整数a,使函数f(x)在x属于[-1,正无穷)上递减,并且f(x)不恒为负?找出一个满足条件的a

求证:函数f(x)=x^3-3x在[1,正无穷)上是增函数.2.已知幂函数f(x)的定义域是{x|x不等于0},且它的图像关于y轴对称,写出一个满足要求的幂函数。3.已知函数f(x)=(ax+1)/(x+2),a属于整数。是否存在
这么简单都不会!
由题意得f'(x)=3x^2-3
令f'(x)=0得x=1,(舍去x=-1)
当x>1时,f'(x)>0,所以原函数在[1,正无穷)递增!
补充1:满足条件的函数有:f(x)=x^-2
补充2:a=0
附:老兄,你不是再玩我吧,我已经很仁至义尽了,你的分数也应该加点吧!

这道题正好是我今天做的……
前面的基本步骤LZ应该都会吧?
从这里开始(X1-X2)(X1^2+X2^2+X1X2-3)
因为X1又因为 X1>=1,X2>1 (X1所以 X1^2>=1,X2^>1,X1X2>=1
所以X1^2+X2^2+X1X2>3即X1^2+X2^2+X1X2-...

全部展开

这道题正好是我今天做的……
前面的基本步骤LZ应该都会吧?
从这里开始(X1-X2)(X1^2+X2^2+X1X2-3)
因为X1又因为 X1>=1,X2>1 (X1所以 X1^2>=1,X2^>1,X1X2>=1
所以X1^2+X2^2+X1X2>3即X1^2+X2^2+X1X2-3>0
之后LZ应该就会了。

收起