已知如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC,(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明(2)若AD=2,AE=1,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:41:10
已知如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC,(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明(2)若AD=2,AE=1,
已知如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC,
(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明
(2)若AD=2,AE=1,求CD长
麻烦大家了
已知如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连接DB、DE、OC,(1)从图中找出一对相似三角形(不添加任何字母和辅助线),并证明(2)若AD=2,AE=1,
(1),△ABC与△BDE是一对相似三角形.
证明:因为圆O与AC切于点D,BE是直径,
∠BDE=90°,
∠A是弦切角,∠ABD是圆周角,它们所对的弧为弧DE,
所以 ∠A=∠ABD.
又∠ABC=∠BDE=90°,
所以 △ABC与△BDE是相似三角形.
(2),设圆O的半径为R,则:
在直角三角形ADO中,由勾股定理,有:
AO^2=OD^2+AD^2,即 (1+R)^2=R^2+2^2,
解得:R=3/2.
因为 ∠A=∠ABD,所以 BD=DA=2.
又因为△ABC与△BDE是相似三角形,
所以AB:BD=AC:BE.
所以(2R+1):2=(2+CD):2R,
即 (2+CD):3=4:2=2
所以 CD=4.
(1)△BCO∽△DBE.
∵∠BDE=90°,∠CBO=90°,
∴∠BDE=∠CBO,
又∵OC⊥BD,
∴∠DEB+∠DBE=∠DBE+∠BOC=90°,
∴∠DEB=∠BOC,
∴△BCO∽△DBE;
(2)∵AD2=AE•AB,AD=2,AE=1,
∴AB=4,
∵CD=CB,∠ABC=90°,设CD的长...
全部展开
(1)△BCO∽△DBE.
∵∠BDE=90°,∠CBO=90°,
∴∠BDE=∠CBO,
又∵OC⊥BD,
∴∠DEB+∠DBE=∠DBE+∠BOC=90°,
∴∠DEB=∠BOC,
∴△BCO∽△DBE;
(2)∵AD2=AE•AB,AD=2,AE=1,
∴AB=4,
∵CD=CB,∠ABC=90°,设CD的长为x,
则(x+2)2=x2+42,
解得x=3,即CD=3.
收起
图呢
图呢