在三角形ABC中,角A:角B=1:3,CD为角平分线,三角形BCD与三角形ACD的面积之比为2:5,求角A的正弦值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:15:46
在三角形ABC中,角A:角B=1:3,CD为角平分线,三角形BCD与三角形ACD的面积之比为2:5,求角A的正弦值.
xSn@&Un6 8q)ʁR@,AHQ)u ĥ.{ouzGt~?$M ĀˆXv49eɘz陒M=Hx0E'Od"ģx\kk|?8)5^<-ֈNyhtKNͻ lkQOH= H=}$^_JyF?u

在三角形ABC中,角A:角B=1:3,CD为角平分线,三角形BCD与三角形ACD的面积之比为2:5,求角A的正弦值.
在三角形ABC中,角A:角B=1:3,CD为角平分线,三角形BCD与三角形ACD的面积之比为2:5,求角A的正弦值.

在三角形ABC中,角A:角B=1:3,CD为角平分线,三角形BCD与三角形ACD的面积之比为2:5,求角A的正弦值.
三角形BCD与三角形ACD,同高,因此有BD/AD=三角形BCD面积与三角形ACD面积=2:5
三角形BCD中:BD/sin∠BCD=BC/sin∠BDC
三角形ACD中:AD/sin∠ACD=AC/sin∠ADC
两式相除:BD/AD=BC/AC(角平分线定理)
BC/AC=BD/AD=2:5
BC/AC=sinA/sinB=sinA/sin3A
sin3A=sin(A+2A)=sinAcos2A+cosAsin2A=sinA(1-2sin²A)+cosA*2sinAcosA=sinA(1-2sin²A+2cos²A)=sinA(3-4sin²A)
BC/AC=sinA/sinB=sinA/sin3A=sinA/[sinA(3-4sin²A)]=2:5
1/(3-4sin²A)=2:5
3-4sin²A=5/2
sin²A=1/8
sinA=(√2)/4

【注:三倍角公式:sin3x=3sinx-4sin³x.】易知,BD:AD=2:5.又由三角形的角平线性质知,BC:AC=BD:AD=2:5.令∠A=x,则∠B=3x.在⊿ABC中,由正弦定理知,sinA:sinB=BC:AC=2:5.===>2sinB=5sinA.即2sin3x=5sinx.===>2(3sinx-4sin³x)=5sinx.因sinx≠0.∴6-8sin&...

全部展开

【注:三倍角公式:sin3x=3sinx-4sin³x.】易知,BD:AD=2:5.又由三角形的角平线性质知,BC:AC=BD:AD=2:5.令∠A=x,则∠B=3x.在⊿ABC中,由正弦定理知,sinA:sinB=BC:AC=2:5.===>2sinB=5sinA.即2sin3x=5sinx.===>2(3sinx-4sin³x)=5sinx.因sinx≠0.∴6-8sin²x=5.===>sin²x=1/8.===>sinx=√2/4.即sinA=√2/4.

收起