如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点过点A做AG‖BC,与DF相交于点G,求证:AG=DG。

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:45:28
如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点过点A做AG‖BC,与DF相交于点G,求证:AG=DG。
xTYNPJ2)&T݀ JJZ$$ u)=-< *U,{=w:ϱe:OzT(tTsZLռTzŹ_MPed7E+^t8GSZ5Nj0M !poF,Z{*vV7Eu{, uoz_O|,`I/i`ޖod,L/ P~#*p6/١G8&GPr]>- ؤsMS7XT@-&ïμkܪ* ~()DmT)IʉCp#V#D qRVh`[u\͵* h2P>p{Gr`/oh%ZN]M\FG~ :`T6K(M:UTKzSqV =1Dv3?<@!{ ƧӒ(iR .]Olʻ$DQ;83_Z|A.2yqn,E?׵#Pc 5Y^'

如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点过点A做AG‖BC,与DF相交于点G,求证:AG=DG。
如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点
过点A做AG‖BC,与DF相交于点G,求证:AG=DG。

如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点过点A做AG‖BC,与DF相交于点G,求证:AG=DG。
连结EF、AE.
证明:∵E、F分别为边BC、AC中点,
∴EF为△ABC的中位线,EF‖AB(即可证:EF‖AD),EF=1/2 AB,
∵AD=1/2 AB,∴EF=AD,∵在四边形ADFE中,EF‖AD,EF=AD
∴四边形ADFE为平行四边形,∴∠D=∠AEF;
∵EF‖BA,∴∠CEF=∠B,EF⊥AC,又∵F为AC中点,∴EF垂直平分AC,
∴EA=EC,∴易证△EAF≌△ECF(HL),∴∠AEF=∠CEF,∴∠AEF=∠B,
又∵AG‖BC,∴∠B=∠GAD,∵∠AEF=∠B,∴∠AEF=∠GAD,
又∵∠AEF=∠D,∴∠GAD=∠D,∴AG=DG.
(好像说得啰嗦了点,应该可以精简,反正主旨思想是用中位线定理作出辅助线再将得到的条件与已知条件相结合,往条件上去“靠”,再经推理后得到.我的思想是证到角与角的关系,再用“等角对等边”得到的.还有其他方法,自己琢磨吧.差点给自己绕晕了)不过,这是哪的题目呀,没做过好像……

由题:
AD:AB=AF:AC=1:2,且∠DAF=∠BAC=90
∴三角形DAF∽三角形BAC
∴∠DFA=∠C
又AG‖BC,所以∠GAC=∠C=∠DFA
∴∠DAG=90-∠GAC=∠D=90-∠DFA
∴AG=DG

如下图在Rt△ABC中,AB=AC,∠BAC=90°∠1=∠2,CE⊥BD的延长线于E,求证BD=2CE 如下图所示,在△ABC中,∠BAC=90°,AB=AC,P为BC上一点,求证:PB²+PC²=2PA² 如下图,在△ABC中, 如图,在△ABC中,∠C=90°,AC=m,∠BAC=∠α,求△ABC的面积.(用α的三角函数及m表示)(我描述一下图:是一个直角三角形,较小的锐角∠BAC=∠α,叫大的锐角是∠B) 如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在rt△abc中,∠bac=90°ab=ac,点m,n在bc边上 如下图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=1/2AB,E、F分别是边BC、AC的中点过点A做AG‖BC,与DF相交于点G,求证:AG=DG。 初二数学题(直角三角形)如图,在△ABC中,∠C=90°,∠BAC=30°,求tanD 如图,13.3-21,在△ABC中∠C90°,∠BAC=60°如图. 如图,在△ABC中,∠ABC=90°,CD⊥AB,AF平分∠BAC,求证:∠CFE=∠CEF 如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,求AD的长. 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC 如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30° 如图 在△abc中 ∠bac=120° ad平分∠bac交bc于d 求证:1/ad=1/ab+1/ac 如图,在△ABC中,AB=AD=DC,∠BAD=32°,求∠BAC度数 如图在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D 已知:如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC交AD于点E,交AC于点F.求证∠AEF=∠AFE