1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11= 1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=1+(1/1+2)+(1/1+2+3)......+(1/1+2+3+....+100) =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:32:49
1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11= 1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=1+(1/1+2)+(1/1+2+3)......+(1/1+2+3+....+100) =
xQKN0JbϤQŹ j*ݰ@,(BH\&e+tƴ /c=fT2rR.Z=0FiU:vh- \~tlz)~E}}Cxx PvBti&w.M7{?}ס~>m}hLh*!$&Bh_r}ЈW'ZZƉ#b(h-#8i=Y+E-KP

1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11= 1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=1+(1/1+2)+(1/1+2+3)......+(1/1+2+3+....+100) =
1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=
1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=
1+(1/1+2)+(1/1+2+3)......+(1/1+2+3+....+100) =

1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11= 1/1*2*3+1/2*3*4+1/3*4*5.+1/9*10*11=1+(1/1+2)+(1/1+2+3)......+(1/1+2+3+....+100) =
1:因为1/(n*(n+1)(n+2))=(1/2)*(1/(n*(n+1))-1/((n+1)(n+2)),所以原式按这样裂项并整理之后=(1/2)*(1/2-1/110)=27/110.
2:1/(1+2+3+.+n)=1/((1/2)*n*(n+1))=2/(n*(n+1))=2*(1/n-1/(n+1)),所以原式=1+2*(1/2-1/3+1/3-1/4+.+1/100-1/101)=1+2*(1/2-1/101)=200/101.