f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)=a+b不好意思,忘了一个条件 (a不等于b),还有,我不是学数学的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:27:16
f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)=a+b不好意思,忘了一个条件 (a不等于b),还有,我不是学数学的
xSN@NaWs6dKF%ʭŨ! &@SABQQgv)Bť=T=av̼f͆Etuf*O<!IvYBIA;0 b3KtV%H3ebMʍSDmr##/ƛ"rDt!v 䁋L&/]&0.1彍Hm2jQO MZ[xij"Dc.mEQtϒ*zQ!^csuD

f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)=a+b不好意思,忘了一个条件 (a不等于b),还有,我不是学数学的
f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)=a+b
不好意思,忘了一个条件 (a不等于b),还有,我不是学数学的

f(0)=0,f(1)=1/2,函数在闭区间上连续,开区间上可导,证明存在a,b属于(0,1)使得f'(a)+f'(b)=a+b不好意思,忘了一个条件 (a不等于b),还有,我不是学数学的
令g(x)=f(x)-(x^2)/2,于是有g(0)=f(0)-0=0;g(1)=f(1)-1/2=0
由于f在闭区间上连续,开区间可导,所以g也在闭区间上连续,开区间可导,
且有g(0)=g(1)=0
对g使用罗尔(Rolle)中值定理,即存在&(那个符号太难打,用这个代替好了)属于(0,1),使得g'(&)=0
因为g'(x)=f'(x)-x,所以
存在&令f'(&)-&=0
令a=b=&,于是有
f'(a)-a=0 f'(b)-b=0
相加有f'(a)+f'(b)-(a+b)=0
即f'(a)+f'(b)=a+b (a=b=&时)
证毕.
哥们你是学数学的吧~~~~

函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x).且在闭区间[0,7]上,只有f(1)=f(3)=0证明函数的周期 函数x=f(x)在(0,2)上是增函数 函数y=f(x+2)是偶函数 将下列从小到大排列 f(1) f(2.5) f(3.5) 已知函数f(x)是定义在(0,+无穷大)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1 ...已知函数f(x)是定义在(0,+无穷大)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1 (1)求f(1); (2)f(x)+f(2-x) 已知函数f(x)是定义在(0,+无穷大)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1,……已知函数f(x)是定义在(0,+无穷大)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)-f(x-2)>3 f(x)是定义在(0,正无穷)上的增函数,f(2)=1,f(xy)=f(x)+f(y) 求f(1) 函数y=f(x)在(0,2)上是增函数.y=f(x+2)是偶函数,比较f(1),f(5/2),f(7/2) 的大小 y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系 已知函数f(x)是定义在区间(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1(1)求f(1)(2)若f(x)+f(2-x) 已知函数f(x)是定义在(0,正无穷)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1,求f(1) 若f(2)+f(2-x) 已知函数f(x)是定义在()上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1.f(1)=0,若f(x)+F(2-x) 已知函数f(x)是定义在(0,+无穷)上的减函数且满足f(xy)=f(x)+f(y),f(1/3)=11.求f(1)2.若f(x)+f(2-x) 已知函数f(x)在(0,+∞)上为减函数.且满足f(x,y)=f(x)+f(y)乘以f(3分之1)求1.f(1);2.若f(x)+f(2-x) -已知二次函数f(x)在定义域(0,∞)上位增函数,且满足f(xy)=f(x)+f(y):1,求f(9),f(27)的值;2,解不等式f(x)+f(x-8) 已知定义在R上的函数f(x)满足f(x)=-f(x+3/2),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+...+f(2009)= 已知定义在R上的函数f(x)满足f(x)=-f(x+3/2),且f(-2)=f(-1)=-1,f(0)=2,则f(1)+f(2)+.+f(2010)= 定义在R上的函数f(x),满足f(x)=log2(1-x) x≤0; f(x)=f(x-1)-f(x-2) x>0,求f(2009)f(2009)=f(2008)-f(2007)f(2008)=f(2007)-f(2006)** *f(2)=f(1)-f(0)f(1)=f(0)-f(-1)累加上式得f(2009)=-f(-1)=-1可是答案是1,请问我的做法错在哪里? 函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x) 已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.求f(9),f(27)的值已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.(1)求f(9),f(27)的值.(2)解不等式f(x)+f(x-8)<2