设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:18:01
设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2
xSMk@+Bj;< {ǠX-UBZ "?$ɿMDⱷ7yoeL|IdGOELbz'(Hpjg A j$ Nb!`%}w1+;F۬1re=y%VATLCP a"Uv$d?p1,0&P'ZDQ3D#0Dm YR].N^WEF/lhAyܱHw533enRjiggjG5L;gka1,K5!Ӣf ^(: _VNj{ݱG:.S+Bߪ|sk;srUarOƧ wD {$:=(^n?gݵ!A

设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2
设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2

设3x²+2x-3=0,两根为x1,x2,求①x2/x1 + x1/x2 ②x1^2+x2^2-4x1x2
根据韦达定理有
X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1
①x2/x1 + x1/x2
=(x2²+x1²)/(x1x2)
=【(x1+x2)²-2x1x2】/(x1x2)
=【4/9-2×(-1)】/(-1)
=-22/9
②x1^2+x2^2-4x1x2
=(x1+x2)²-2x1x2-4x1x2
=(x1+x2)²-6x1x2
=4/9-6×(-1)
=6又4/9

根据韦达定理
一元二次方程ax²+bx+c=0中,两根x1,x2有如下关系: x1+ x2=-b/a , x1·x2=c/a.
所以x1+ x2=-2/3 , x1·x2=-1
①x2/x1 + x1/x2
=(x2²+x1²)/(x1·x2)
=(x2²+x1²)/(x1·x2)
=【(x2+x1)...

全部展开

根据韦达定理
一元二次方程ax²+bx+c=0中,两根x1,x2有如下关系: x1+ x2=-b/a , x1·x2=c/a.
所以x1+ x2=-2/3 , x1·x2=-1
①x2/x1 + x1/x2
=(x2²+x1²)/(x1·x2)
=(x2²+x1²)/(x1·x2)
=【(x2+x1)²-2x1·x2】/(x1·x2)
=【(-2/3)²+2】/(-1)
=-22/9
②x1^2+x2^2-4x1x2
=(x2²+x1²)²-6x1x2
=(-2/3)²+6
=4/9+6
=58/9

收起