已知函数f(x)=lg(1-x)/(x+1) g(x)=1/(x+2) 设函数F(x)=f(x)+g(x)求F(x)的解析式及定义域在F(X)的图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直?若存在,求出A,B的坐标,若不存在,说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:05:46
已知函数f(x)=lg(1-x)/(x+1) g(x)=1/(x+2) 设函数F(x)=f(x)+g(x)求F(x)的解析式及定义域在F(X)的图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直?若存在,求出A,B的坐标,若不存在,说明理由.
xWOOA*{jڅFܼz1& QdQhkESu 쮧 }of]APm651qgޟy!ΆwP"ɖQyK^J.?/7[..H'q$Z#3!^^Ŗq=f34i:bܒ#7 {67?x>D G+٩7!"]`!,u/#^@!HPb/jJ]$+(J6e=If1pI}1Mr:a69@ }9Qp]Y xç|Dpױ(DV@Zd✿/8DAwh1 S1YbmKD[Ic L4 i}<=&c.ӚM}))1`.OM\$qlh,5*׍ (CF>>G) G^\>pZߨXӈ\}KPb9M .|

已知函数f(x)=lg(1-x)/(x+1) g(x)=1/(x+2) 设函数F(x)=f(x)+g(x)求F(x)的解析式及定义域在F(X)的图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直?若存在,求出A,B的坐标,若不存在,说明理由.
已知函数f(x)=lg(1-x)/(x+1) g(x)=1/(x+2) 设函数F(x)=f(x)+g(x)
求F(x)的解析式及定义域
在F(X)的图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直?若存在,求出A,B的坐标,若不存在,说明理由.

已知函数f(x)=lg(1-x)/(x+1) g(x)=1/(x+2) 设函数F(x)=f(x)+g(x)求F(x)的解析式及定义域在F(X)的图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直?若存在,求出A,B的坐标,若不存在,说明理由.
(1)
f(x)=lg(1-x)/(x+1),g(x)=1/(x+2)
对数的真数必须大于0,分母不能等于0
(1-x)/(x+1)>0 且 x+2≠0
(1-x)(1+x)>0 且 x≠-2
1-x²>0 且 x≠-2
解得 -1

F(x)=lg(1-x)/(x+1)+1/(x+2),定义域(-1,1)
不存在,因为F(x)在其定义域上严格单调递减

F(x)=f(x)+g(x)=[lg(1-x)/(x+1)] +[1/(x+2)]
(1-x)/(x+1)>0,x+2≠0
定义域 X∈(-1,1)
不存在
∵F(x)=lg(1-x)/(x+1)] +[1/(x+2)] =lg(-1+2/(x+1)] +[1/(x+2)]
t=lg[-1+2/(x+1)]为减函数,u=1/(x+2)为减函数
F...

全部展开

F(x)=f(x)+g(x)=[lg(1-x)/(x+1)] +[1/(x+2)]
(1-x)/(x+1)>0,x+2≠0
定义域 X∈(-1,1)
不存在
∵F(x)=lg(1-x)/(x+1)] +[1/(x+2)] =lg(-1+2/(x+1)] +[1/(x+2)]
t=lg[-1+2/(x+1)]为减函数,u=1/(x+2)为减函数
F(x)为减函数
所以单调函数x不同对应的函数值也不同

收起

设M(x,y)是函数g(x) 图象上任意一点,则M(x,y)关于直线y=x-1的对称点为M(y+1,X-1)在函数y= 的图象上,∴x-1= ,整理得:g(x)= ,∴F(x)= ,x∈(-1,1).
(2)任取-1

全部展开

设M(x,y)是函数g(x) 图象上任意一点,则M(x,y)关于直线y=x-1的对称点为M(y+1,X-1)在函数y= 的图象上,∴x-1= ,整理得:g(x)= ,∴F(x)= ,x∈(-1,1).
(2)任取-1

收起

(1)
f(x)=lg(1-x)/(x+1),g(x)=1/(x+2)
对数的真数必须大于0,分母不能等于0
(1-x)/(x+1)>0 且 x+2≠0
(1-x)(1+x)>0 且 x≠-2
1-x²>0 且 x≠-2
解得 -1F(x)=lg[(1-x)/(x+1)]+1/(x+2)
函数的定义...

全部展开

(1)
f(x)=lg(1-x)/(x+1),g(x)=1/(x+2)
对数的真数必须大于0,分母不能等于0
(1-x)/(x+1)>0 且 x+2≠0
(1-x)(1+x)>0 且 x≠-2
1-x²>0 且 x≠-2
解得 -1F(x)=lg[(1-x)/(x+1)]+1/(x+2)
函数的定义域是(-1,1)
(2)
不存在
∵F(x)=lg(1-x)/(x+1)] +[1/(x+2)] =lg(-1+2/(x+1)] +[1/(x+2)]
t=lg[-1+2/(x+1)]为减函数,u=1/(x+2)为减函数
F(x)为减函数
假设存在不同的两点A(a,F(a)),B(b,F(b)),a使得AB垂直于y轴,则有关系F(a)=F(b)
但由F(x)是减函数,且aF(b)
有矛盾,所以假设不成立
不存在两个不同的点A,B,使直线AB恰好与Y轴垂直
所以单调函数x不同对应的函数值也不同

收起