如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:43:54
如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小
xV]kV+&aSْeGttk8&c }X5B {d i6a+YsSs>~~Dla%ꖔAozykχ[R{~7Adyi`dKASS}m_Qo#~ݠ2\=` Ĝ48X}>}o9wW\nϽi0 7CK ^?K)M lIw +}8xpwN5:= _>1E{=0 vWGca3Jz+\ˈpsT_P伷N?i]0rqAaAO]117 0l-;d} Yl%njd;)O()/llY H-!9Łfʂ4f Yٝx\XȘb`k$ӌ K qn1r6z!sSB\^8|6CE$Z7od/Nʹ>3-4ʲShͥN[WwMKk%KSk*En,"݆V_\S_R=S5課_Q˚QnWevR߫Uڶq%,YE4|ᔵYm eGӫT{`PN^dy}#`+ KRkdNSQdRCX4pA.tHNBJ.hzxp/

如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小
如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小

如图,在△ABC中,AB=AC,∠BAC=a,且60°<a<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-a,求∠PBC的大小

在△ABC内取点D,使得PD//BC且BP=CD,连结AD

则易知四边形BCDP是等腰梯形

有∠PBC=∠DCB

因为AB=AC,所以∠ABC=∠ACB

则∠ABP=∠ACD

所以△ABP≌△ACD (SAS)

则AP=AD且∠BAP=∠CAD

在△ACP中,PC=AC,∠PCA=120°-a

则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2

又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°

所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°

因为AP=AD,所以△PAD是等边三角形

则PD=AD

所以△PCD≌△ACD (SSS)

则∠PCD=∠ACD=∠PCA/2=60°-a/2

又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2

则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°

所以∠PBC=∠BCD=30°

在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PC...

全部展开

在△ABC内取点D,使得PD//BC且BP=CD,连结AD
则易知四边形BCDP是等腰梯形
有∠PBC=∠DCB
因为AB=AC,所以∠ABC=∠ACB
则∠ABP=∠ACD
所以△ABP≌△ACD (SAS)
则AP=AD且∠BAP=∠CAD
在△ACP中,PC=AC,∠PCA=120°-a
则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2
又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°
所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°
因为AP=AD,所以△PAD是等边三角形
则PD=AD
所以△PCD≌△ACD (SSS)
则∠PCD=∠ACD=∠PCA/2=60°-a/2
又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2
则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°
所以∠PBC=∠BCD=30°

收起

不会

延长AP交BC于点Q,
由(1) (2) 可知∠CAP=30°+α/2,∠ABC=90°-α/2
∴∠BAP+∠ABC=60°
∴∠PQB=120°∴∠PQC=60°
在QC上取一点M,使QM=PQ,连接PM
则△PQM是等边三角形,∴∠PMC=120°,
在△ABQ和△CPM中
∠BAP=∠PCB,∠PQB=∠PMC,AB=AC=CP

全部展开

延长AP交BC于点Q,
由(1) (2) 可知∠CAP=30°+α/2,∠ABC=90°-α/2
∴∠BAP+∠ABC=60°
∴∠PQB=120°∴∠PQC=60°
在QC上取一点M,使QM=PQ,连接PM
则△PQM是等边三角形,∴∠PMC=120°,
在△ABQ和△CPM中
∠BAP=∠PCB,∠PQB=∠PMC,AB=AC=CP
∴△ABQ≌△CPM
∴BQ=PM=PQ
而∠PQB=120°,∴∠PBC=30°

收起