设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.(1)求b/a的取值范围;(2)方程f(x)=0在(0,1)内是否有实数根?若有,判断有几个根并给出证明;若没有,说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:10:05
设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.(1)求b/a的取值范围;(2)方程f(x)=0在(0,1)内是否有实数根?若有,判断有几个根并给出证明;若没有,说明理由.
xTn@~uNIuQC!94 RA :էɯ쏃$Nqgg[a~u#6p6f~ s[s\Ye&i'ɏwH&x͎D6ϊn>;vޣWog6]nAX{ƗB?+لlDBC*v 8s(M:i<*>bYST.Nh_ljYR%24Q 2Ut7rU=HgzĮƣ C^[H,*o/ (i:)t'gm%-`

设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.(1)求b/a的取值范围;(2)方程f(x)=0在(0,1)内是否有实数根?若有,判断有几个根并给出证明;若没有,说明理由.
设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.
(1)求b/a的取值范围;
(2)方程f(x)=0在(0,1)内是否有实数根?若有,判断有几个根并给出证明;若没有,说明理由.

设f(x)=3ax^2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.(1)求b/a的取值范围;(2)方程f(x)=0在(0,1)内是否有实数根?若有,判断有几个根并给出证明;若没有,说明理由.
1.由f(0)>0得:c>0
又a+b+c=0 所以a+b0 得:3a+2b+c>0
又a+b+c=0
所以2a+b>0 即b/a>-2
所以取值范围为(-2,-1).
2.判别式=(2b)^2-4*3a*c
= (2b)^2-4*3a*(-b-a)
=(2b)^2+12ab+12a^2
=(2b+3a)^2+4a^2
>0
所以有两不等实根

1.f(0)=c>0
f(1)=3a+2b+c>0
3a+2b+c-2(a+b+c)>0
a-c>0
a>c>0
3a+2b+c-(a+b+c)>0
2a+b>0
b>-2a
b/a>-2
a+b+c=0
b=-a-c<-a
b/a<-1
所以,:a>0且-2

全部展开

1.f(0)=c>0
f(1)=3a+2b+c>0
3a+2b+c-2(a+b+c)>0
a-c>0
a>c>0
3a+2b+c-(a+b+c)>0
2a+b>0
b>-2a
b/a>-2
a+b+c=0
b=-a-c<-a
b/a<-1
所以,:a>0且-22.f(1)
=3a+2b+c
=(a+b+c)+(2a+b)
=2a+b
=a+(a+b)
=a-c>0
因为f(0)=c>0,所以a>0
f(1/2)
=(3a/4)+b+c
=(a+b+c)-(a/4)
=-a/4<0
且f(0)>0,f(1)>0
所以方程f(x)=0在(0,1/2),(1/2,1)内各有一实根

收起