已知x,y∈R+,且x≠y,求证x^5y^-5+x^-5y^5>x^4y^-4+x^-4y^4大家帮帮忙!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:36:07
已知x,y∈R+,且x≠y,求证x^5y^-5+x^-5y^5>x^4y^-4+x^-4y^4大家帮帮忙!
xRJ@~xK.IۤyOeA@^v/E5BEZ*j=m5HmNy'ZE!|͗ٙ)mֹ4.Iyޜ5V>ڰJI12Ub3O61b.h`UShL kE?Ǭ#2ѨMU @gtA[-Ey 2X(e`9<;!PV%H'Oi4>~.+e"iϪi"ql(ɐ c(rq~N֤y^+

已知x,y∈R+,且x≠y,求证x^5y^-5+x^-5y^5>x^4y^-4+x^-4y^4大家帮帮忙!
已知x,y∈R+,且x≠y,求证x^5y^-5+x^-5y^5>x^4y^-4+x^-4y^4
大家帮帮忙!

已知x,y∈R+,且x≠y,求证x^5y^-5+x^-5y^5>x^4y^-4+x^-4y^4大家帮帮忙!
作差法:
(x/y)^5+(y/x)^5-(x/y)^4-(y/x)^4
=(x^10+y^10-x^9y-xy^9)/(x^5y^5)
=(x^9-y^9)(x-y)/(x^5y^5)
=(x^3-y^3)(x^6+x^3y^3+y^6)(x-y)/(x^5y^5)
=(x-y)(x^2+xy+y^2)(x^6+x^3y^3+y^6)(x-y)/(x^5y^5)
=(x-y)^2(x^2+xy+y^2)(x^6+x^3y^3+y^6)/(x^5y^5)
因为x,y∈R+,且x≠y
所以(x-y)^2>0,(x^2+xy+y^2)>0,(x^6+x^3y^3+y^6)>0,(x^5y^5)>0
所以(x-y)^2(x^2+xy+y^2)(x^6+x^3y^3+y^6)/(x^5y^5)>0
所以(x/y)^5+(y/x)^5>(x/y)^4+(y/x)^4

0分问题啊?采用逆证
首先:两边同乘(XY)~5
得到:X~10 + Y~10 > X~9*Y+Y~9*X
移项得:X~9*(X-Y) > Y~9*(X-Y) 得 (X~9-Y~9)*(X-Y)>0
因为x,y∈R+,所以(X~9-Y~9)和(X-Y)同号,又因为x≠y,所以
(X~9-Y~9)*(X-Y)>0
可以啦!