2是一元二次方程x^2+(a-2)x+b=0的等根,如果用根的判别式和根与系数的关系来解,则的值为6与-2;如果只用根与系数的关系解题,则的值为-2.问为什么不需要用根的判别式来解,只需用根与系数的关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 14:56:52
2是一元二次方程x^2+(a-2)x+b=0的等根,如果用根的判别式和根与系数的关系来解,则的值为6与-2;如果只用根与系数的关系解题,则的值为-2.问为什么不需要用根的判别式来解,只需用根与系数的关
xSn@~H!/yJ*^|tR. Q% 8iBʀKxz1jDk=;|}3k74k:G^C9J:ZR)%qWCy{CK_D0rB@䳼;y/CvHQt*1F TGztl!Auֲ~^2d0 /#]*8˯ǎ tq ?bѓֳmux<h< :t=8.l!;wi;_Ȣuc* Mz1$Da48bpZoDm:*,(z ---S6L3娲HqU޹p)f (eQzP %)J, + ߬8m9g; [5q;: jRFU|Kn

2是一元二次方程x^2+(a-2)x+b=0的等根,如果用根的判别式和根与系数的关系来解,则的值为6与-2;如果只用根与系数的关系解题,则的值为-2.问为什么不需要用根的判别式来解,只需用根与系数的关
2是一元二次方程x^2+(a-2)x+b=0的等根,如果用根的判别式和根与系数的关系来解,则的值为6与-2;如果只用根与系数的关系解题,则的值为-2.
问为什么不需要用根的判别式来解,只需用根与系数的关系来解?

2是一元二次方程x^2+(a-2)x+b=0的等根,如果用根的判别式和根与系数的关系来解,则的值为6与-2;如果只用根与系数的关系解题,则的值为-2.问为什么不需要用根的判别式来解,只需用根与系数的关
a=6是不符合题意的.
由于x=2是一元二次方程x²+(a-2)x+b=0的等根,
因此有:2²+(a-2)×2+b=0
判别式△=(a-2)²-4b=0
由以上两式可以解得 a=-2,b=-2a=4
假定a=6,则b=-12,原方程可化简为如下:
x²-4x-12=0,很显然该方程有两根分别为x1=-2,x2=6不符合“有等根”题意.
另外一种解法:
一元二次方程x^2+(a-2)x+b=0的两根为x1=x2=2
由韦达定理:a-2=-(2+2),b=2*2=4
即a=-2,b=4
不需要用根的判别式来解的原因是方程有两等根,利用根与系数的关系可以直接解得a和b的值,如以上的第二种解法.