已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 05:24:51
已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率
xRN@~-ݶsK^= 4)(JxDKAxۅ,-||̮ZL>}hQƻk;ݢ#;Z"M%ns5@ةt춰[ˢvZ?ռlg3qi D*w+ eDVV;f)uv2N¬w=*v=] ]늖4'( iYYDϤ A B

已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率
已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率

已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率
设双曲线方程为x^2/a^2-y^2/b^2=1.
A(-a,0),B(a,0).
设点P(m,n),则点Q(m,-n),
向量PB=(a-m,-n),向量AQ=(m+a,-n),
因为向量PB*向量AQ=0,
所以(a-m)*( m+a)+n*n=0,
即a^2-m^2+n^2=0.
m^2= a^2+n^2.
因为点P(m,n)在双曲线上,
所以m^2/a^2-n^2/b^2=1.
将m^2= a^2+n^2代入上式可得:
(a^2+n^2)/a^2-n^2/b^2=1.
1+ n^2/a^2-n^2/b^2=1.
n^2/a^2-n^2/b^2=0,
所以a^2=b^2,
又因c^2=a^2+b^2,
所以c^2=2a^2,c/a=√2,
即离心率是√2.

已知A,B是双曲线C的2个顶点,直线L垂直实轴,与双曲线交于P,Q两点,若向量PB*向量AQ=0,则双曲线C的离心率 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的顶点为A1(-1,0),A2(1,0),离心率为√2.(1)求双曲线C的标准方程;(2)已知直线l是过双曲线C右焦点且与x轴垂直的直线,若直线l和双曲线C的渐近线相 已知中心坐标原点的双曲线C的右焦点为已知中心坐标原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0)(1)求双曲线C的方程(2)若直线l:y=kx+根号2与双曲线C恒有两个不同交点A,B.且向量OA*向 双曲线的左焦点F,右顶点A ,直线L过F且垂直于x轴,L交双曲线于B、C两点,若三角形ABC是锐角三角形,求双曲线离心率的取值范围 A、B是双曲线C的两个顶点,直线L与实轴垂直,与双曲线C交P、Q两点,若向量PB乘向量AQ=0,则双曲线C的离心率 过双曲线M:x^2-y^2/b^2=1的左顶点A作斜率为1的直线L过双曲线M:x^2-y^2/b^2=1的左顶点A作斜率为1的直线L,若L与双曲线M的两条渐近线分别相交于点B,C,且AB=BC(这是长度),则双曲线的离心率是多少? 圆锥曲线综合题目,给个思路呗.已知直线l的斜率为1,且过P(2,-1),若直线l与双曲线交于A,B点,AB中点坐标(4,1),且双曲线的焦点为椭圆x^2/5+y^2/4=1在x轴上的两个顶点,求双曲线的方程. 过双曲线M:x^2/4-y^2/b^2的左顶点A做斜率为1的直线L,若L与双曲线的两条渐进线分别相交于B C ,且|AC|=2|BC|,则双曲线的离心率是?我算出的方程中还有b值~怎么消b阿? 设双曲线x^2/a^2-y^2/b^2=1的半焦距为c设双曲线X^2/A^2-Y^2/B^2=1(B>A>0)的半焦距为C,直线L过(A,0),(0,B),已知原点到直线的距离是根号3C/4,双曲线的离心率是__ 已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0),求双曲线C的方程;(2)若直线:L:Y=kx+根号2与双曲线C恒有两个不同的交点A和B,且OA*OB>2(其中O为原点0.求k的取值范围. 已知中心在原点的双曲线C的右焦点为(2,0)右顶点为(√3,0)①求双曲线C的方程②若直线l:y=kx+√2与双曲线C恒有两个不同的交点A和B且向量OA×OB>2(O为原点)求k的取值范围 圆锥曲线复习 (16 17:57:6)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√3,0)(1)求双曲线C的方程.(2)若直线l:y=kx+√2与双曲线C恒有两个不同的交点A和B,且OA向量*OB向量>2(其 已知双曲线x²/9-y²/16=1中,A、B是双曲线的左右顶点,过点A作直线L垂直于x轴,下接:求到双曲线的右顶点与到直线L的距离相等的点的轨迹方程为了问答双方利益抄题目已校对, 过双曲线M:x^2-y^2/b^2=1的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于B,C两点,且/AB/=/BC/ 则双曲线M的离心率是               已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左顶点为A,右焦点为F,过点F作垂直于x轴的直线与双曲线交于B,C两点,且AF=3,BC=6.(1)求双曲线的方程(2)过F的直线l交双曲线左支D点,右支E点,P为DE的中点,若以 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0),定直线L:x=a^2/c与一条渐近线L交于点P,F是双曲线上的右焦点.1.求证PF⊥L2.若|PF|=3,且双曲线的离心率e=5/4,求双曲线方程 已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于AB两点,与双曲线的两支分别交于CD两点已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于A、B两点,与双曲线的两支分别交于C、D两点,求证 在直角坐标平面内,把过原点的直线l与双曲线:y=1/2x在第一象限的交点记作点A,已知A点的横坐标为1(1)求直线l的函数解析式(2)将直线l向上平移4个单位后,直线l与x轴、y轴分别交于B、C两点,求三